

GEDTECHNICAL INVESTIGATION & PAVEMENT DESIGN

PROPOSED WENTWORTH HEALTH SERVICE REDEVELOPMENT 24 HOSPITAL ROAD, WENTWORTH, NSW

JBS&G SYDNEY, NSW

S22-348 REV 1 12 OCTOBER 2022 AITKEN ROWE TESTING LABORATORIES PTY LTD

Head Office: 4/2 Riedell Street (Po Box 5158), Wagga Wagga, NSW, 2650 P: (02) 69395555 Email: admin@artl.com.au 17b Battista Street, Griffith, NSW, 2680 P: (02) 69645551 | 1/60 Boronia Street, Albury, NSW, 2640 P: (02) 60401661

Geotechnical Engineering Environmental Consultancy Soil Concrete Aggregate Testing NATA Accredited Laboratories

ABN 53 058 315 138

ACN 058 315 138

12 October 2022

Reg. No.: S22-348 REV 1

JBS&G Level 1, 50 Margaret Street, Sydney NSW 2000

Attention: Gina Pinget – Project Manager

Dear Gina,

GEOTECHNICAL INVESTIGATION & PAVEMENT DESIGN PROPOSED WENTWORTH HEALTH SERVICE REDEVELOPMENT, 24 HOSPITAL ROAD, WENTWORTH, NSW

We have completed the above revised geotechnical investigation and pavement design report and forward to you for your perusal and use.

Should you have any queries, please contact us.

Yours Faithfully,

Peter Forbes-Taber Geotechnical Engineer

TABLE OF CONTENTS

	1
SITE DESCRIPTION	1
SITE TOPOGRAPHY & GEOLOGY	2
INVESTIGATION PROCEDURE	
4.1 Fieldwork	2
4.2 Laboratory Testing	3
SUBSURFACE CONDITIONS	
5.1 Main Hospital Building	3
5.2 Existing Levee Bank	5
5.3 Staff Accommodation Building	5
5.4 Pavement Areas & Access Roads	6
SITE PREPARATION & EARTHWORKS	7
FOUNDATION FOR PROPOSED STRUCTURES	
7.1 Site Classification	8
7.2 Foundation Design	9
7.2 Settlement	12
SOIL AGGRESSION & ACIDITY	12
EXCAVATION, SUPPORT & RETAINING WALL	13
SITE SUB-SOIL CLASS – EARTHQUAKE DESIGN	15
SUBGRADE FOR PAVEMENT AREAS	15
PAVEMENT DESIGN	
12.1 Design Traffic	16
12.2 Pavement Design	16
GENERAL COMMENT	18
	SITE DESCRIPTION

FIGURES

Figure 1	The Subject Site	1
Figure 2	Site Geology	2
Figure 3	Liquefaction Hazard Maps	15

ADDENDUM

APPENDIX A	-	BOREHOLE & DCP TEST LOCATION PLAN
APPENDIX B	-	BOREHOLE LOGS & MATERIALS SCHEDULE WITH EXPLANATORY NOTE
APPENDIX C	-	DYNAMIC CONE PENETROMETER TEST REPORTS
APPENDIX D	-	LABORATORY TEST REPORTS BY AITKEN ROWE TESTING LABORATORIES PTY LTD
APPENDIX E	-	LABORATORY TEST REPORTS BY SYDNEY ENVIRONMENTAL & SOIL LABORATORY PTY LTD
APPENDIX F	-	CIRCLY DESIGN PRINTOUTS

1.0 INTRODUCTION

Further to your request in response to our revised quotation, Q22-264R dated 28 July 2022, a geotechnical investigation was carried out at the location of the proposed Wentworth Health Service Redevelopment. It is understood that the proposed redevelopment includes the construction of a new main hospital building structure and a small staff accommodation building, with associated pavement areas and access roads throughout the subject site.

The purpose of the investigation was to determine the type and condition of the subsurface soils and groundwater conditions by drilling, testing and sampling across the subject site and make recommendations for the proposed redevelopment and provide pavement design options for the proposed pavement areas.

2.0 SITE DESCRIPTION

The site for the proposed development is located at DP 1136392, Lot 1, No. 24 Hospital Road, Wentworth, NSW approximately 0.45km south-east/east of the Wentworth town centre. The site consists of existing single-story buildings, concrete and bitumen sealed pavement areas and grassed lawn areas as part of the Wentworth hospital development which forms part of the Far West Local Health District (FWLHD). Small to large sized trees were also noted throughout the existing hospital grounds and surrounding the subject site as noted at the time of the investigation.

The subject site is surrounded by vacant land, Tucker Creek and the Silver City Highway to the north, vacant land to the east, vacant land including historic Wentworth Water Tower and Murray River to the south and the Darling River and Wentworth town centre to the west (refer to Figure 1 below). The subject site is generally flat and covered with buildings and lawn as noted at the time of the investigation. It should be noted an earthen levee bank approximately 1.5m in height above the natural ground level surrounds the exiting hospital site which was reportedly built pre the year 1956 protecting the subject site from the 1956 major flood which is reportedly the highest flood recorded in the local Wentworth area.

Figure 1 – The Subject Site (Google Earth Screen Image)

3.0 SITE TOPOGRAPHY & GEOLOGY

The general topography of the area is flat, gently undulating low tablelands. The 1:500,000 Geological Series Sheet for Wentworth (First Edition 1971) indicates the subject area is underlain by Quaternary aged floodplains and outwash areas (Qrs) with Pleistocene lacustrine deposits, limestones, clays, shales and well bedded sandstones (QI) north-west of the Wentworth town centre (refer to Figure 2 below).

It should be noted that the borehole investigation revealed natural alluvial material comprising claybased and sand-based material within the investigated depth of 7.5m (refer to borehole logs).

Figure 2 – Site Geology

4.0 INVESTIGATION PROCEDURE

4.1 Fieldwork

The fieldwork for the investigation consisted of drilling fifteen (15) boreholes (BH1 to BH15) at the locations selected by the client at the locations as shown in the attached borehole and DCP test location plans as follows;

- Five boreholes (BH1, BH2, BH3, BH4, BH6) to the depth of 7.5m at the location of the proposed new main hospital building (includes the construction of four (4) piezometers (P1 to P4) for future ground water monitoring)
- One borehole (BH5) to the depth of 8.0m at the location of the existing levee bank
- One borehole (BH7) to the depth of 7.5m at the location of the proposed new staff accommodation building
- Eight boreholes (BH8 to BH15) to the depth of 1.5m at the location of the proposed pavement areas and access roads

The boreholes were taken to the termination depths stated above and they were excavated using our trailer mounted drilling rig between 9 and 11 August 2022. Dynamic Cone Penetrometer (DCP) testing was carried out from the existing surface level at each borehole location (DCP1 to DCP15), and Standard Penetrometer Testing (SPT) was carried out at seven (7) borehole locations (BH1 to BH7) in order to assess the strength of the underlying subgrade material. The representative samples were recovered from the boreholes for relevant laboratory testing.

Piezometers were constructed at four (4) borehole locations (BH1 to BH4), which were backfilled with washed fine graded gravel then sealed with bentonite with an aluminium monument concreted/installed to allow future ground water monitoring at the subject site.

The fieldwork was supervised by our Geotechnical Engineer of Aitken Rowe Testing Laboratories Pty Ltd, who nominated the sampling and prepared continuous engineering logs of the augered boreholes.

The detailed Borehole Logs including SPT results and Piezometer construction details with explanatory note are presented in Appendix B and DCP test reports in Appendix C. The descriptions in the Borehole Logs are provided in accordance with "AS 1726–2017 Geotechnical site investigations".

4.2 Laboratory Testing

The relevant laboratory testing which included moisture content determination test, linear shrinkage test, particle size distribution test, Atterberg Limit test, Shrink/Swell analysis, Standard Maximum Dry Density (SMDD) test and California Bearing Ratio (CBR) tests on the recovered natural subgrade samples from the boreholes across the subject site, were undertaken at our NATA accredited testing laboratory in Wagga Wagga, NSW. The samples for CBR testing on natural subgrade material were compacted at 95% of SMDD and at nearest 100% of Standard Optimum Moisture Content (SOMC) and soaked for 10 Days.

The laboratory test reports for field moisture content determination (FMC), linear shrinkage (LS), particle size distribution, Atterberg Limit, Shrink/Swell (Iss), SMDD and CBR tests are presented in Appendix D. The FMC, LS, and Iss test results are also incorporated in the respective borehole logs and the FMC, SOMC, and CBR test results are incorporated in the respected materials schedule and logs as relevant and presented in Appendix B.

The pH, Electrical Conductivity (EC), chloride, sulphate and resistivity analysis tests were also carried out on disturbed samples recovered from the boreholes and they were carried out at Sydney Environmental and Soil Laboratory (SESL) in Sydney, NSW. The test reports as received from SESL are presented in Appendix E.

5.0 SUBSURFACE CONDITION

5.1 Main Hospital Building

BH1 to BH4 and BH6 represents the proposed new main hospital building (refer to attached borehole and DCP test location plan). The boreholes drilled revealed that the site at the location of BH1 to BH4 and BH6 is generally underlain by fill material comprising topsoil of 100 to 200mm thickness, low plasticity sandy silt (BH1 and BH4 only) and various medium and high plasticity clays, silty clays, and sandy clays extending to 0.5m in BH1 and BH2, 0.7m in BH3 and BH4 and 0.6m in BH6 overlying natural alluvial material.

The natural alluvial material encountered at the subject site comprises medium, medium to high, and high plasticity clays and silty clays extending to 4.8m in BH1, 6.5m in BH2, 5.6m in BH3, 4.5m in BH4 and 5.5m in BH6, which is underlain by fine to medium grained clayey sand extending to the borehole termination depth at 7.5m in BH2, BH3, BH4 & BH6 and to 6.4m in BH1, which is then underlain by high plasticity clay extending to the borehole termination depth at 7.5m in BH1. It should be noted that borehole wall collapse in the clayey sand layer occurred in all boreholes, preventing the borehole target depth of 8.0m from being achieved. The fill material encountered in BH1 to BH4 and BH6 appeared to have been placed "uncontrolled" and varying from "poorly compacted" to "moderately compacted".

The moisture condition of the underlying natural material was generally varied from less than plastic limit to greater than plastic limit throughout the clay-based profile in BH1 and BH2 however noted as generally greater than plastic limit throughout the entire clay-based profile in BH3, BH4 and BH6, with the underlying sand-based material noted as generally wet where encountered in BH1 to BH4 and BH6 at the time of the investigation.

Seepage was encountered at a depth of 4.8m below the existing surface level and noted to extend to 6.4m in BH1, from 6.0m to 7.5m (end of borehole) in BH2, from 5.6m to 7.5m (EOBH) in BH3, 4.5m to 7.5m (EOBH) in BH4 and from 5.0m to 7.5m (EOBH) in BH6 at the time of the investigation.

The post-drilling water depths were also recorded one day after the Piezometer installation with recordings presented in Table 1 below. It should be noted that variations to the water table level could fluctuate with changes to the season, temperature and rainfall.

Piezometer Location	Initial Seepage Depth (m)	Post Drilling Water Depth (m)
P1	4.8	4.2
P2	6.0	4.4
P3	5.6	4.9
P4	4.5	3.2

Table 1 Piezometer Ground Water Levels

As per the DCP and STP test results and visual observation of the resistance by auger TC bit, the underlying natural material (below fill material) is assessed to generally vary between stiff and very stiff consistency throughout the clay-based profile with the underlying clayey sand assessed to be generally medium dense where encountered in BH1 to BH4 and BH6 at the time of the investigation. It should be noted however that the clay-based profile was noted to be firm consistency from 0.7m to 1.1m and from 1.5m to 2.4m in BH3, firm and firm to stiff consistency throughout the clay-based profile in BH4 and firm consistency from 0.6m to 1.1m and firm to stiff consistency from 4.5 to 6.0m in BH4 at the time of the investigation.

The boreholes were logged in accordance with "AS1726-2017 – Geotechnical site investigations". The details of the subsurface profile should be referred to the attached borehole logs with explanatory note presented in Appendix B.

5.2 Existing Levee Bank

BH5 represents the existing levee bank location (refer to attached borehole and DCP test location plan). The borehole drilled revealed that the site is generally underlain by fill material comprising medium plasticity sandy clay of 100mm thickness overlying high plasticity clay fill material to 2.0m, overlying natural alluvial material comprising medium plasticity silty clay and high plasticity clay extending to 6.7m, which is then underlain by fine to medium grained clayey sand extending to the borehole termination depth at 7.5m in BH5. The fill material encountered in BH5 appeared to have been placed "uncontrolled" and "moderately compacted".

The moisture condition of the underlying fill material was noted to be generally greater than plastic limit throughout the high plasticity clay fill profile with the underlying natural material generally less than plastic limit in the upper natural clay-based profile then increasing to equal to plastic limit and greater than plastic limit with depth, with the underlying sand-based material noted as generally wet where encountered in BH5 at the time of the investigation.

Seepage was encountered at a depth of 6.7m below the existing surface level and noted to extend to 8.0m (end of borehole) in BH5 at the time of the investigation. It should be noted that variations to the water table level could fluctuate with changes to the season, temperature and rainfall.

As per the DCP and STP test results and visual observation of the resistance by auger TC bit, the underlying natural material (below fill material) is assessed to be generally very stiff consistency in the upper clay-based natural profile to 4.5m, then stiff to very stiff consistency to 6.7m, with the underlying clayey sand assessed to be generally medium dense where encountered in BH5 at the time of the investigation.

The boreholes were logged in accordance with "AS1726-2017 – Geotechnical site investigations". The details of the subsurface profile should be referred to the attached borehole logs with explanatory note presented in Appendix B.

5.3 Staff Accommodation Building

BH7 represents the proposed new staff accommodation building (refer to attached borehole and DCP test location plan). The borehole drilled revealed that the site is generally underlain by fill material comprising topsoil of 100mm thickness and medium plasticity sandy clay fill material to 0.3m, overlying natural alluvial material comprising medium to high and high plasticity clays and silty clays extending to 5.8m, which is then underlain by fine to medium grained clayey sand extending to the borehole termination depth at 7.5m in BH7. It should be noted that borehole wall collapse in the clayey sand layer occurred in the borehole, preventing the borehole target depth of 8.0m from being achieved. The fill material encountered in BH7 appeared to have been placed "uncontrolled" and "poorly compacted".

The moisture condition of the underlying natural material was noted as generally greater than plastic limit throughout the clay-based profile with the underlying sand-based material noted as generally wet where encountered in BH7 at the time of the investigation.

Seepage was encountered at a depth of 5.8m below the existing surface level and noted to extend to 7.5m (end of borehole) in BH7 at the time of the investigation. It should be noted that variations to the water table level could fluctuate with changes to the season, temperature and rainfall.

As per the DCP and STP test results and visual observation of the resistance by auger TC bit, the underlying natural material (below fill material) is assessed to be generally soft consistency to 0.5m then firm consistency to 1.5m, then increasing to stiff consistency and stiff to very stiff consistency with depth throughout the clay-based profile, with the underlying clayey sand assessed to be generally medium dense where encountered in BH7 at the time of the investigation.

The boreholes were logged in accordance with "AS1726-2017 – Geotechnical site investigations". The details of the subsurface profile should be referred to the attached borehole logs with explanatory note presented in Appendix B.

5.4 Pavement Areas & Access Roads

BH8 to BH15 represents the proposed pavement areas and access roads throughout the subject site (refer to attached borehole and DCP test location plan). The boreholes drilled revealed that the site is generally underlain by various fill materials comprising topsoil of 100 to 200mm thickness (BH10, BH12 to BH15), low plasticity sandy silt (BH9, BH13, BH14), medium plasticity silty clay (BH8) and sandy clay (BH10, BH11, BH15), and high plasticity clay (BH9, BH13) and sandy clay (BH10, extending to 0.4m in BH8 to BH11, 0.2m in BH12, 0.7m in BH13, 0.5m in BH14, and 0.3m in BH15, overlying natural alluvial material comprising medium, medium to high and high plasticity clays and silty clays extending to the borehole termination depth at 1.5m in BH8 to BH15. The fill material encountered in BH8 to BH15 appeared to have been placed "uncontrolled" and varying from "poorly compacted" to "moderately compacted".

The moisture condition of the underlying fill and natural material was generally varied from less than plastic limit to greater than plastic limit throughout the silt and clay-based profile in BH8 to BH15 at the time of the investigation. No seepage was encountered during the drilling of BH8 to BH15, however it should be noted that variations to the water table level could fluctuate with changes to the season, temperature and rainfall.

As per the DCP test results and visual observation of the resistance by auger TC bit, the underlying natural material (below fill material) is assessed to be generally firm consistency to 1.0m then increasing to stiff consistency with depth in BH8, generally firm consistency to 0.8m then increasing to stiff consistency with depth in BH9, generally very stiff consistency throughout the tested profile in BH10, generally firm consistency throughout the tested profile in BH10, generally firm consistency throughout the tested profile in BH11, generally stiff consistency to 0.6m then increasing to stiff to very stiff consistency with depth in BH12, generally stiff to very stiff consistency to 1.2m then increasing to very stiff consistency with depth in BH13, generally firm to stiff consistency to 1.3m then increasing to very stiff consistency with depth in BH14, and generally stiff consistency to 0.9m then decreasing to firm to stiff consistency with depth in BH15 at the time of the investigation.

The boreholes were logged in accordance with "AS1726-2017 – Geotechnical site investigations". The details of the subsurface profile should be referred to the attached materials schedule and logs with explanatory note presented in Appendix B.

6.0 SITE PREPARATION & EARTHWORKS

The topsoil and fill material encountered across the proposed site is assessed to be "not suitable" for use as subgrade or foundation of any structure in its current state. We therefore recommend excavation of this material and replace and re-compact with approved fill material in such a way that it achieves a minimum of 98% of Standard Maximum Dry Density (SMDD) if to be used as subgrade and foundation for the proposed construction.

It should be noted that if a deep footing system, such as deep pad footing or pile footing system is to be adopted and the slab is to be fully suspended on the footing system, then the removal of the existing fill material may not be required. In general, if the slab is not to be fully suspended, the following site preparation is recommended as required once the fill and unsuitable materials, if any, are removed and cuts if required are undertaken.

- Remove topsoil, fill material, and unsuitable materials, if any, and stockpile for later use for landscaping and backfilling as appropriate. An average stripping depth of 0.1 to 0.2m is anticipated for the topsoil across the proposed site, with uncontrolled fill (excluding levee bank fill) noted to extend up to 0.7m (refer to borehole logs).
- Once the topsoil, fill, and unsuitable materials, if any, are removed as required, the exposed natural clay-based material should then be scarified to a depth of about 200mm; moisture conditioned to within +/-2% of Standard Optimum Moisture Content (SOMC) and compacted to a minimum of 98% of Standard Maximum Dry Density (SMDD).
- Proof roll the exposed subgrade using a minimum of 10 passes of 12 tonne dead weight roller to detect any soft, loose or heaving areas. It should be noted that the clay-based subgrade was noted to be firm and firm to stiff consistency up to 2.4m below the existing surface level at the location of BH3, 4.5m in BH4, 1.1m in BH6, 1.5m in BH7, 1.0m in BH8, 0.8m in BH9, 1.5m in BH11, 1.3m in BH14, and 1.5m in BH15 at the time of the investigation (refer to borehole logs). It should be noted that surface movement on the firm and firm to stiff consistency natural subgrade encountered across the site may be experienced during the construction. This material may be required to be removed/treated as required prior to the placement of any controlled fill material.
- Any soft, loose or heave areas, if detected, should be excavated down and backfilled with appropriate approved materials, compacted in 200mm thick layers to the equivalent density of minimum 98% of SMDD. It should be noted that the depth and location of the affected material may be varied depending on the climatic condition at the time of the construction.
- Any area of exposed subgrade, which exhibits shrinkage cracking and does not require recompaction, should be watered and rolled until the shrinkage cracks do not reappear. During this undertaking, care should be exercised to ensure the surface does not become soft.

Subsequent to the above subgrade preparation, clean approved fill preferably granular materials can be placed as required and compacted to the compaction requirements as given above. The degree of compaction of any fill placement should be verified by a NATA accredited testing authority to ensure that it achieves the specified density. As the fill is to be placed on the clay-based formation, the compaction shall be carried out with minimum amount of water required to achieve the required density. The boundaries of the fill areas should be sloped to a maximum batter of 1.0 Vertical to 2.0 Horizontal as required or retained with a properly designed retaining wall.

The structural fill supporting any structural element of the structures shall be prepared in such a way that it achieves a minimum of 98% of SMDD in every 150mm thick compacted layers and certified by a relevant NATA accredited testing laboratory for which a safe allowable bearing pressure of 100kPa may be adopted, provided proper drainage measures are incorporated in the design, during and after the construction.

It is highly recommended to undertake the construction of fill pads under Level 1 supervision in accordance with "AS3798 – 2007 – Guidelines on earthworks for commercial and residential developments" if fill pads are to be used for the foundation of any structure.

If the subgrade is to be stabilised, then the exposed clay-based subgrade should be stabilised with lime-based additive as required. It is anticipated that mixing of 3% of appropriate additive to the soil material should provide required strength for the subgrade. However, this should be confirmed with trial testing in the laboratory prior to adoption for the construction.

It would be essential to maintain drainage of the site area during any earthworks to prevent rainfall from adversely affecting the materials such that they become unsuitable for direct re-use.

7.0 FOUNDATION FOR PROPOSED STRUCTURES

7.1 Site Classification

It is assessed that the "uncontrolled" fill material encountered across the site at the location of the proposed main hospital building and staff accommodation building is considered "unsuitable" for any structural element of the footing system in its current state. Therefore, based on the available data, the site shall be classified as **"Class P – Problem"** site in accordance with Australian Standard "AS 2870-2011 – Residential slabs and footings".

However, if the "uncontrolled" fill material is removed and replaced with approved structural fill (existing fill material may be re-used provided topsoil including organic material and silt-based, if any, is excluded) and re-compacted in such a way that it can be established as "controlled fill" as specified above or all the footings (i.e. edge beams internal beams and load support thickenings) are founded on the stiff natural ground, then **"Class "H1-D" - Highly reactive deep drying"** classification may be adopted (the calculated characteristic surface movement (y_s) values noted to be above 40 and below 60mm) in accordance with the Australian Standard AS 2870 - 2011 "Residential Slab and Footings", **provided the subgrade is prepared as specified in Section 6.0.**

It should also be noted that the proposed removal of some of the existing buildings and concrete path/slabs/pavers and trees across the subject site is likely to significantly modify the soil moisture conditions under the footprint of the proposed new buildings. Therefore, the site may have **"abnormal moisture conditions"** after the removal of the existing buildings, concrete paths/slabs/pavers and trees and shall therefore be classified as **"P - Problem site"** in accordance with the Australian Standard AS 2870 - 2011 "Residential Slab and Footings".

It is anticipated that equilibrium moisture conditions may be achieved within a minimum period of 6 to 12 months following the removal of the existing concrete paths/slabs/pavers and building/footing system and trees, provided abnormal moisture ingress does not affect the underlying foundation material during this period. It is highly recommended to undertake additional drilling and field moisture content determination tests at or after the minimum 6 to 12 month period.

If fill placement is required for the new construction, it is highly recommended to place granular fill comprising mainly sand and well graded gravel, but caution shall be exercised not to select a 'raw' or non-plastic material that may induce erosion. It should be noted that the clay soils are subject to saturation and shrink/swell problems. **The fill shall be placed in accordance with clause 6.4.1 & 6.4.2 of AS2870 and any site classification should be reviewed.**

As noted above, existing building and concrete paths/slabs and trees are to be demolished and removed across the subject site prior to the new constructions. It is therefore highly recommended to completely remove the concrete slabs and entire footing systems of the removed buildings and entire tree and tree root systems and allow the ground to achieve equilibrium moisture condition throughout the soil profile after the removal and then backfill in a controlled manner that it can be used as "structural fill" as required.

7.2 Foundation Design

The shallow footing system such as deep edge beam or pad and strip footings may be adopted and they may be proportioned for a maximum allowable bearing pressure of 100kPa and a subgrade reaction modulus (k) of 30kPa/mm founded on the underlying natural stiff consistency or better clay-based material or "controlled fill" subgrade, prepared as specified in Section 6.0 provided proper drainage measures are incorporated during and after the construction. It should be noted that the exposed natural subgrade should be prepared as specified in Section 6.0 prior to the construction of any footing slab as required.

Alternatively, the deep pad footing system, bored and cast-in-place pile footing system or driven pile footing system or screw pile footing system, if adopted, should be taken into the natural claybased material and the design parameters given in Table 2 below may be adopted for the design of the footing system. It should be noted that the geotechnical design parameters given in Table 2 were estimated from the SPT test results and visual observation of the soil cuttings from the boreholes.

BH	Depth (m)	Material	UBP	USF	USF (U)	ABP	ASF	ASF	USS	Density	Modulus
		Description	(kPa)	(C)	(kPa)	(kPa)	(C)	(U)	(kPa)	(kN/m³)	subgrade
				(kPa)			(kPa)	(kPa)	<u>OR</u>		reaction
									AOF([®])		(kN/m³) **
BH1	0.5-4.8	Clay	500	50*	25*	200*	20*	10*	60	17.5	20,000
	4.8-6.4	Clayey Sand	375	38	19	150	15	7.5	29 [°]	17.5	15,000
	6.4-7.5	Clay	250	25	13	100	10	5	30	16.5	10,000
BH2	0.5-4.5	Clay / Silty Clay	500	50*	25*	200*	20*	10*	60	17.5	20,000
	4.5-6.5	Clay / Silty Clay	250	25	12.5	100	10	5	30	16.5	10,000
	6.5-7.5	Clayey Sand	375	38	19	150	15	7.5	29 [®]	17.5	15,000
BH3	0.7-2.4	Clay / Silty Clay	125	13*	6.5*	50*	5*	2.5*	15	15.5	5,000
	2.4-5.6	Silty Clay	250	25	12.5	100	10	5	30	16.5	10,000
	5.6-7.5	Clayey Sand	375	38	19	150	15	7.5	29 [®]	17.5	15,000
BH4	0.5-4.5	Clay / Silty Clay	125	13*	6.5*	50*	5*	2.5*	15	15.5	5,000
	4.5-6.0	Clayey Sand	125	13	6.5	50	5	2.5	28 [®]	16.5	5,000
	6.0-7.5	Clayey Sand	375	38	19	150	15	7.5	29 [®]	17.5	15,000
BH6	0.6-1.1	Clay	125	10*	5*	50*	5*	2.5*	15	15.5	5,000
	1.1-3.7	Clay / Silty Clay	500	50*	25*	200*	20*	10*	60	17.5	20,000
	3.7-5.5	Clay	125	13	6.5	50	5	2.5	15	15.5	5,000
	5.5-7.5	Clayey Sand	375	38	19	150	15	7.5	29 [®]	17.5	15,000
BH7	0.5-1.5	Clay / Silty Clay	125	13*	6.5*	50*	5*	2.5*	15	15.5	5,000
	1.5-2.5	Silty Clay	250	25	12.5	100	10	5	30	16.5	10,000
	2.5-4.5	Silty Clay	500	50	25	200	20	10	60	17.5	20,000
	4.5-5.8	Silty Clay	250	25	12.5	100	10	5	30	16.5	10,000
	5.8-7.5	Clayey Sand	375	38	19	150	15	7.5	29 [®]	17.5	15,000

Table 2 Geotechnical Design Parameters

Note:

UBP USF (C) USF (U) ABP ASF (C)	 Ultimate Base Pressure Ultimate Skin Friction (Compression) Ultimate Skin Friction (Uplift) Allowable Base Pressure Allowable Skin Friction (Compression)
ASF (U) USS AOF Density	 Allowable Skin Friction (Uplift) Undrained Shear Strength Angle of Friction Density (at in-situ moisture)

* The side adhesion within fill material and the top 1.5m natural soil shall be ignored.

** Factor of safety of 2.5 is adopted in estimating the Modulus of Subgrade Reaction.

If uplift forces are to be assessed, the allowable side resistance on the footing system may be taken as equivalent to 50% of the allowable side adhesion values given above. It should be noted that a factor of safety (FOS) 2.5 was adopted for the bearing pressure and skin friction values given in Table 2 for the natural alluvial material. If Pad/Column footing system is to be adopted, then footing size and depth shall be designed in such a way that it withstands lateral forces and overturning moments. Care shall be exercised in adopting the recommended design parameters given above in respect to the influenced zone of the adopted footing system.

The footing excavations in the clay-based material should not be left exposed for prolonged period as deterioration of footing bases may occur when subjected to wetting and drying processes. Care should be exercised during construction to ensure water ponding does not occur since this may lead to subsequent softening of the founding materials.

Groundwater seepage and side collapse should be expected during the footing excavation, particularly for pile footing system within the clayey sand material. Such seepage should be readily controllable by conventional sump and pump dewatering systems installed at the base of the excavation with the provision of temporary liners sealed into the impervious material or by installing a series of well points. In a situation of groundwater inflows during the foundation construction, correct underwater concrete placement technique should be adopted to ensure achievement of the specified concrete quality.

The footing excavations shall be cleared off the debris and ponding water prior to the placement of the concrete in order to adopt the recommended design parameters. The bases of the pile shafts and footings must be clean and free of soft and loose material and the sides of bored pile holes where side adhesion is adopted must be free of smear prior to concreting. To achieve this, bases of bored pile holes should be cleaned using a cleaning bucket and the sides of the pile holes should be roughed to remove the smear zone associated with drilling, or the side adhesion values given above Table 2 should be reduced by 50%.

If water ponds in the base of footings or the base founding materials are affected by moisture ingress, then this material should be excavated to expose the subgrade, which has not been exposed to moisture, and pour the concrete immediately. If a delay in pouring concrete is anticipated, then a blinding layer should be placed over the base of the footing to prevent softening of the footing base, particularly for silt-based and clay-based foundation.

It is highly recommended to have the footing excavations inspected by an experienced geotechnical engineer to ensure that the specified allowable bearing capacity is achieved for the footing system.

Based on the subsurface materials encountered and the known seepage issues with side collapse in the sand-based layer, it appears that screw pile footing design is the most appropriate footing system for the proposed development at the subject site. If adopted, the screw piles should be installed into the natural clay or sand-based material with careful monitoring of the installation torque to ensure the required end bearing capacity is achieved. It is recommended to provide this report to the contractor to enable them to choose the right type and size of piling rig for the construction.

7.3 Settlement

We envisage that the total settlements should be minimal provided the design is made within the allowable design parameters recommended and the maintenance of the structures and proper drainage measures are adopted around the structures.

Shallow footings proportioned in accordance with design parameters recommended above are estimated to have load induced settlements of no greater than 0.75% of the width of the footing.

Pile foundation designed in accordance with design parameters recommended above are estimated to have load induced settlements of no greater than 0.75% of the diameter of the piles. It is anticipated that differential settlement is likely to be less than 50% of the total settlement provided the footings are designed in accordance with the design parameters given above.

It should be noted that although the aforementioned design parameters given above are in terms of allowable limit, their use should be checked against settlement, using deformation characteristics values of the underlying clayey silt material given in Table 3. It should be noted that differential settlement should not exceed 50% of the total settlement.

Table 3Deformation Characteristics Values1

Parameters	Stiff Clay	Very Stiff Clay
Bulk Density (kN/m ³)	16.5	17.5
Elastic Modulus (Undrained) (MPa) -E _u	7.0	15.0
Coefficient of Volume Compressibility - (m ² /MN) - m _v	0.07	0.07

Note: 1 - These values are estimated from the field SPT test results and visual assessment of the recovered soil samples.

8.0 SOIL AGGRESSION & ACIDITY

Two (2) samples of the clay-based subgrade from BH1 and BH3 were externally tested by SESL in Sydney, NSW. The pH values ranging from 9.0 to 9.3 were recorded on the underlying natural claybased material and the soils are therefore considered to be "strong alkalinity". EC Values of 0.27 to 0.61mS/cm were recorded on the same samples tested, which are assessed to be "slight to moderate salinity". The "strong alkaline" nature of the clay-based natural material is considered "mild to non-aggressive" towards concrete due to the nature of the impermeable material and "non-corrosive" towards steel.

The sulphate content ranging from 210 to 630mg/kg and chloride content ranging from 340 to 1410mg/kg were also noted on the samples tested and they are considered generally low. The low chloride and sulphate levels are considered "non to mildly aggressive" towards concrete due to the nature of the impermeable material and "non-corrosive" towards steel.

The resistivity values ranging from 8.2 to 140Ω .m were recorded on the same samples tested, which are assessed to be "high resistivity" on sample 1F and "low resistivity" on sample 3E. The "high resistivity" is considered to provide a "non-aggressive" environment towards unprotected steel due to the nature of the impermeable material.

It should be noted however that the "low resistivity" is considered to provide a "moderately to severely aggressive" environment and "moderately to severely aggressive" environment respectively towards unprotected steel.

The designer is therefore referred to Section 4 of AS3600-2018 (Tables 4.3, 4.4, 4.8.1, 4.8.2, 4.8.3) and Section 6 of AS2159-2009 (Tables 6.4.2C, 6.4.3, 6.5.2C, 6.5.3) for any special precautionary measures required for buried concrete and steel elements into these materials.

9.0 EXCAVATION, SUPPORT & RETAINING WALL

It is noted that excavations and cuts will be involved for the construction of the new main hospital building at the subject site. Based upon the subsurface conditions encountered in the boreholes, it is expected that the materials to be excavated will comprise layers of fill and natural silt/clay-based material depending on the extent of the proposed cut. It is assessed that the excavation within the fill and natural silt/clay material could be undertaken by conventional earthmoving plant such as standard boring equipment, scrapers, dozers, rollers, standard trenching machine, backhoes or excavator with boring attachment.

It is therefore recommended to provide the borehole logs and the assessment to the contractor to enable them to choose the right equipment for the boring and excavations.

It should be noted that trafficability in the silt and clay-based material for wheeled vehicles can be expected to be slightly difficult during and following rainfall when it is exposed.

The temporary batter slopes of 1(V): 1(H) is recommended for unsupported cuts of up to 3.0m depth within natural soil material.

The following is recommended for permanent batter slopes for unsupported cuts of up to 3.0m depth in the natural clayey sandy silt and sandy silty clay material encountered across the site:

• Natural SILT/CLAY material 1(V): 2(H)

The permanent batter slope of the unsupported structural fill of up to 3.0m height should not exceed 1(V): 2(H).

If vertical cut with equivalent retaining wall design option is to be adopted, the following characteristic earth pressure coefficients and subsoil parameters given in Table 1 may be adopted for the design of the wall.

Registration No: S22-348 REV 1

Table 4 Design Parameters – Retaining Wall

Design Parameters	Natural Soil material
Bulk Unit Weight	17.0 kN/m ³
Active Earth Pressure Coefficient, Ka	0.4
At rest Earth Pressure Coefficient, K _o	0.6
Passive Earth Pressure Coefficient, K _p	2.4
Effective cohesion, c	0.5
Effective Friction Angle, ϕ'	24•

Appropriate factor of safety should be applied in the design of the walls. The walls should be designed to withstand full hydrostatic pressure unless special measures are taken to introduce complete and permanent drainage of the ground behind the wall. It should be noted that similar design parameters may be used for the fill embankment provided similar quality material is used for the fill and the fill placement is placed under Level 1 supervision as specified above.

It should be noted that surcharge loadings should not be placed within a distance equivalent to the excavation depth form the crest of a batter cut or fill.

Care would be required to ensure excavation bases are cleaned of loosened and remoulded debris. If feasible, the exposed subgrade base should be proof rolled to detect any soft or heaving areas. Any soft or heave areas should be removed. The excavation base should not be left exposed for prolonged periods as deterioration of bases may occur when subjected to wetting and drying processes. Care should be exercised during construction to ensure water ponding does not occur in the excavations since this may lead to subsequent softening of the founding materials.

It would be prudent to expect some seepage, even at shallower depth of the excavation during the construction. Any seepage should be readily controllable by conventional sump and pump dewatering systems installed at the base of the excavation with the provision of temporary liners sealed into the impervious material or by installing a series of well points.

It should be noted that side collapse within the uncontrolled fill, particularly natural comprising gravel/sand-based and silt-based material may be experienced during the excavation and therefore care and caution shall be exercised throughout the construction. The use of temporary liners may be required during the excavation within these materials. Care and caution should also be exercised by personnel entering into any excavation greater than 1.5m. Any excavation greater than 1.5m in depth should have benches as required.

It should be noted that, no matter what method of excavation support is used, some ground displacement will occur within and immediately surrounding the excavation. We recommend that the risk of structural damage to nearby structures and buried services as a result of such excavation-induced movements, be carefully evaluated. We believe it is unlikely that excavation induced movements will significantly affect structures situated back from the excavation perimeter a distance greater than the excavation depth.

10.0 SITE SUB-SOIL CLASS – EARTHQUAKE DESIGN

The site sub-soil class in accordance with Section 4.2 of AS1170.4-2007 "Part 4: Earthquake actions in Australia", is assessed to be "Class C_e- Shallow soil site". As per Figure 3.2(A) of AS1170.4-2007, a Hazard Design Factor (Z) of 0.09 should be adopted for the subject site. Based on Tables 3.2 and 3.3 of AS1170.0-2002, the proposed development is considered 'Importance Level 4', and the 'Annual Probability of Exceedance' should be determined in conjunction with the design working life.

Liquefaction hazard for the subject site is considered to be generally low as per the 'Liquefaction Hazard Maps for Australia' developed by T.I. Mote and J.N. Dismuke for the 15th World Conference on Earthquake Engineering (WCEE) 2012, which are presented in Figure 3 below. It should be noted that map (a) represents an annual probability of exceedance equal to 10% in 50 years and map (b) represents 2% in 50 years (corresponding to 1/500 and 1/2500 respectively).

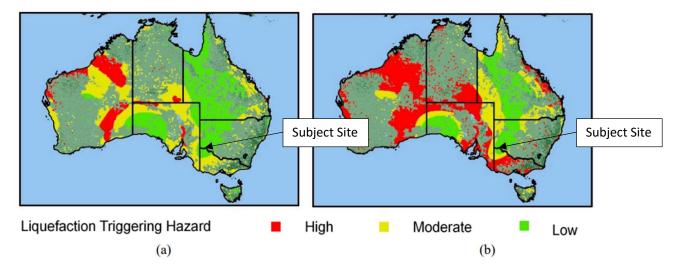


Figure 3 – Liquefaction Hazard Maps for Australia, T.I. Mote & J.N. Dismuke

11.0 SUBGRADE FOR PAVEMENT AREAS

The boreholes drilled revealed that the site is generally underlain by various fill materials comprising topsoil, low plasticity sandy silt, medium plasticity silty clay and sandy clay, and high plasticity clay and sandy clay, overlying natural alluvial material comprising medium, medium to high and high plasticity clays and silty clays within the investigated depth of 1.5m in BH8 to BH15 (refer to attached materials schedule and logs).

The laboratory 10 day soaked CBR tests indicated CBR values of 3.0 to 3.5% on natural high plasticity clay material and 4.0% on natural medium plasticity silty clay material, which were compacted at 95% of SMDD and at nearest 100% SOMC. The in-situ CBR values correlated from DCP tests indicate CBR values ranging from 3 to 23% on the above natural subgrade materials.

It should be noted that in-situ CBR values correlated from the field tests (DCP test) are generally higher than laboratory 10 day-soaked CBR values. It should be appreciated that the CBR test results is directly related to the dry density and the water content of the material. It is noted that the

Registration No: S22-348 REV 1 Project/Location: Geotechnical Investigation & Pavement Design – Proposed Wentworth Health Service Redevelopment, 24 Hospital Road, Wentworth, NSW Client: JBS&G – Sydney, NSW Optimum Moisture Content (OMC) at which the sample was compacted in the laboratory and the moisture content after soaking at which the sample was tested are generally higher than Field Moisture Content (FMC), which could be contributing factor in resulting generally high CBR values in some areas of the field.

It is noted that the Wentworth area has an annual average rainfall of <1000mm and it is assumed that the subgrade would be prepared as specified in Section 6.0 and the moisture content of the subgrade materials would be generally less than Optimum Moisture Content with provision of drainage measures across the site.

Based on these evaluations and assumptions, the design subgrade CBR value of 3.0% and a subgrade reaction modulus (k) of 30kPa/mm may be adopted for the design of the proposed pavement areas and access roads at the subject site provided drainage measures are provided and maintained around the pavement throughout the pavement life.

12.0 PAVEMENT DESIGN

12.1 Design Traffic

Based on the anticipated traffic data supplied by the client representative, Mr. Matthew Chow of SCT Consulting, in the emails dated 14 September 2022, the following pavement design parameters as given in Table 4 are used for the calculation of the design traffic for the proposed pavement areas and access roads. It should be noted that the traffic volumes are estimates only, and the subsequent pavement designs should be revised if the actual traffic volumes are found to be higher than the below values.

Table 5 Design Parameters

Design Parameters	Proposed Pavement Areas
AADT 2022	43
Heavy Vehicle %	25.0%
Directional Factor	0.5
Annual growth	0.0%
Design Life	30 years
ESA/HVAG (Refer Table 12.2 of Austroads Pavement Design	0.443
Manual)	
Cumulative number of heavy vehicle axle groups in the design	1.47x10 ⁵ HVAGs
lane during design period (Ndt)	
Calculated Design Traffic (DESA)	6.52x10 ⁴

12.2 Pavement Design – Proposed Pavement Areas & Access Roads

In adopting the design subgrade CBR of 3.0% and the design traffic of 6.52x10⁴ ESA for 30 years design life as discussed above, one of the following pavement designs, as a minimum, may be adopted for the proposed pavement areas and access roads at the subject site.

40mm Asphalt (AC14) – 2200MPa <u>OR</u> 7mm Primerseal followed
by 14mm Seal <u>OR 1</u> 4/7mm Double Seal
200mm TfNSW DGS20 quality or equivalent (Ev= 250MPa)
225mm TfNSW DGS40 quality or equivalent (Ev= 250MPa)
Subgrade CBR 3.0%

The above pavement will give a design life of 31 years, according to Circly 7.0 (1 February 2022), using the given design parameters, provided proper drainage measures are incorporated at the site. It should be noted that this does not allow any tolerance on pavement layers. It should also be noted that the surface asphalt layer or bitumen layer is not part of the structural design of the pavement.

Design Option 2 – Pavement with Granular Material (TfNSW DGB20 & DGS40 quality material) & Stabilised Subgrade

40mm Asphalt (AC14) – 2200MPa <u>OR</u> 7mm Primerseal followed by
14mm Seal <u>OR</u> 14/7mm Double Seal
200mm TfNSW DGS20 quality or equivalent (Ev= 250MPa)
250mm Stabilised subgrade layer (* stabilised with 3% based
additive as appropriate) (Ev= 100Mpa)
Subgrade CBR 3.0%

Note: * - The clay-based subgrade should be stabilised with appropriate additive as required as discussed above. However, this should be confirmed with laboratory trial testing prior to adoption for the construction.

The above pavement will give a design life of 30 years, according to Circly 7.0 (1 February 2022), using the given design parameters, provided proper drainage measures are incorporated at the site. It should be noted that this does not allow any tolerance on pavement layers. It should also be noted that the surface asphalt layer and bitumen layer is not part of the structural design of the pavement.

Design Option 3 – Pavement with Granular Material (TfNSW DGB20 & Select fill quality material)

40mm Asphalt (AC14) – 2200MPa <u>OR</u> 7mm Primerseal followed
by 14mm Seal <u>OR </u> 14/7mm Double Seal
170mm TfNSW DGB20 quality or equivalent (Ev= 350MPa)
250mm Select Fill Material* (Ev=150MPa)
Subgrade CBR 3.0%

Note*: (i) Select fill material should have a CBR>15% and plasticity index (PI) <12%. (ii) Select fill material should be modified with 2% hydrated lime if CBR <15% and/or PI>12%. The above pavement will give a design life of 33 years, according to Circly 7.0 (1 February 2022), using the given design parameters, provided proper drainage measures are incorporated at the site. It should be noted that this does not allow any tolerance on pavement layers. It should also be noted that the surface asphalt layer or bitumen layer is not part of the structural design of the pavement.

13.0 GENERAL COMMENT

- Occasionally, the subsurface soil conditions between the completed boreholes may be found different (or may be interpreted to be different) from those expected. This can also occur with groundwater conditions, especially after climatic changes. If such differences appear to exist, we recommend that you immediately contact us.
- The material specified as base and sub-base material as per above designs may be used provided the material meets all criteria as shown in Table 242.3 and 242.4 of AusSpec for NGB20, NGS20/NGS40 or TfNSW DGB20/DGS20 specification. It is therefore highly recommended to use those similar quality materials and to undertake on-going quality control test to ensure that the material quality is maintained throughout the construction.
- The pavement materials shall be compacted to a minimum of 102% SMDD for base and 100% SMDD for sub-base and select fill or as per Council Specification.
- It is highly recommended that an adequate drainage system should be formed to maintain constant moisture conditions in the pavement and subgrade below the pavement. It is also highly recommended to place interface trench drain at the joints between existing and new pavement if the existing materials are found different from new materials, particularly if the existing or new pavement has a stabilised layer. The trench drain of 300x300mm shall be placed below the stabilised layer and be extended to about 300mm.
- It should be noted that site preparation may expose wet subgrade material if excavation is carried out after prolonged period of rainfall. Trafficability in the silt/clay materials for wheeled vehicles can be expected to be slightly difficult during and following rainfall, if it is exposed. Caution shall therefore be exercised during the construction.

Should you have any queries, please do contact us.

Yours Faithfully,

Peter Forbes-Taber Geotechnical Engineer

Tin Maung Principal Geotechnical Engineer (Director)

ADDENDUM

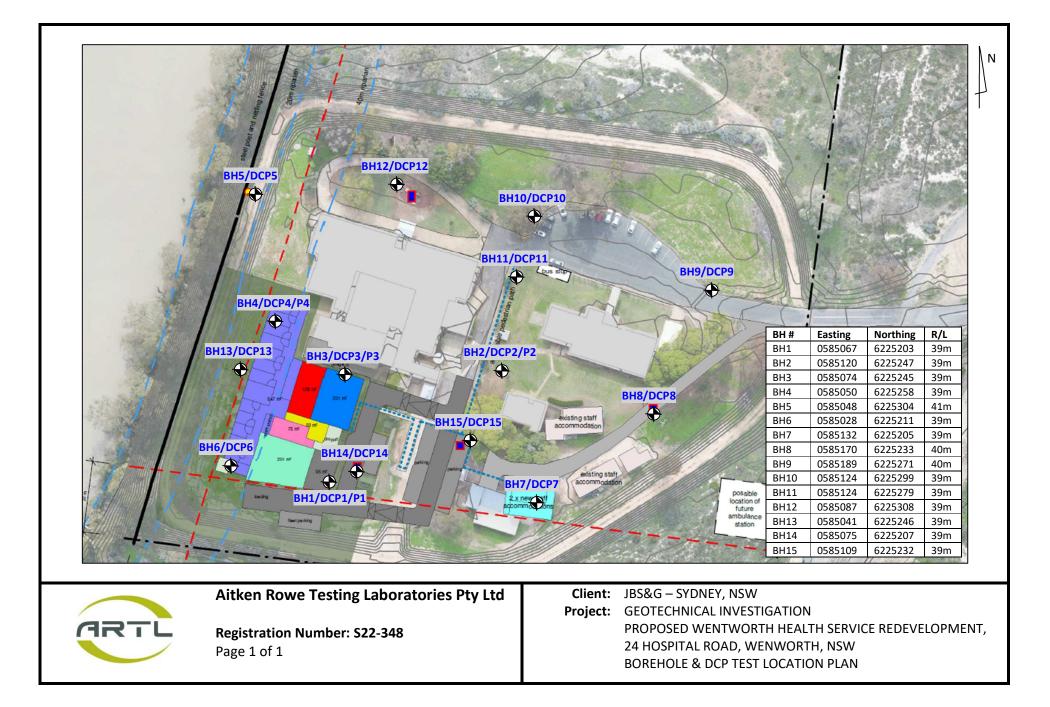
LIMITS OF INVESTIGATION

The recommendations made in this report are based on the assumption that the test results are representative of the overall subsurface conditions. However, it should be noted that even under optimum circumstances, actual conditions in some parts of the building site may differ from those said to exist, because no geotechnical engineer, no matter how qualified, and no subsurface exploration program, no matter how comprehensive, can reveal all that is hidden by earth, rock and time.

The client should also be aware that our recommendations refer only to our test site locations and the ground level at the time of testing.

The recommendations in this report are based on the following: -

- a) The information gained from our investigation.
- b) The present "state of the art" in testing and design.
- c) The building type and site treatment conveyed to us by the client.
- d) Historical Information


Should the client or their agent have omitted to supply us with the correct relevant information, or make significant changes to the building type and/or building envelope, our report may not take responsibility for any consequences and we reserve the right to make an additional charge if more testing is necessary.

Not withstanding the recommendations made in this report, we also recommend that whenever footings are close to any excavations or easements, that consideration should be given to deepening the footings.

Unless otherwise stated in our commission, any dimensions or slope direction and magnitude should not be used for any building costing calculations and/or positioning. Any sketch supplied should be considered as only an approximate pictorial evidence of our work.

APPENDIX A

BOREHOLE & DCP TEST LOCATION PLAN

APPENDIX B

BOREHOLE LOGS & MATERIALS SCHEDULE WITH EXPLANATORY NOTE

	AITKEN ROWE TESTING LABO	Ground L							Sheet No.: 1 of 2 Date: 9/08/2022		
		Method:			-	TC Bit			GPS N: 6225203 (R/L: 39m) E: 0585067		
USCS Symbol	Description	Depth (m)	Moisture		Consistency/ Rel. Density	Sample		Field Test	Remarks & Field Records	Piezometer	
ML	FILL/TOPSOIL: Sandy SILT; low plasticity, fine to coarse sand, grey		MC <p< td=""><td>L</td><td>St.</td><td>Туре</td><td>No.</td><td>SPT</td><td>FILL: Appears moderately compacted</td><td>h</td></p<>	L	St.	Туре	No.	SPT	FILL: Appears moderately compacted	h	
ML	FILL: Sandy SILT; low plasticity, fine to coarse sand, trace gravel, grey	0.5			VSt.	D	1A		'Uncontrolled'		
CH	CLAY; high plasticity, with fine to medium sand, grey	0.3				U50	1B		NATURAL LS = 14.0% FMC = 13.4% Iss = 3.88		
		1.0					-				
I-CH	CLAY; medium to high plasticity, trace sand, yellow	E				D	1C				
		1.5 				D	1D	1.5 SPT 7,12, 17 N = 29			
		2.0						1.95			
		2.5								E-3	
СН	CLAY; high plasticity, trace sand, grey	3.0	MC>P	LS	StVSt.		-	3.0			
		 				D	1E	SPT 6, 9, 10 N = 19	LS = 14.0% FMC = 23.6%		
								3.45			
		4.0		-	St.	D	1F				
		4.5						4.5	Post drilling Seepage @ 4.2m		
						D	1G	SPT 6, 9, 10 N = 19	Piezo installed		
SC	Clayey SAND; fine to medium grained, fines of medium plasticity, yellow grey	5.0	w		MD		1H	4.95	Seepage @ 4.8m to 6.4m		
		5.5									
		 6.0									
	Registration No.: S22-348								Logged By: PFT		
	Location: Geotechnical Investigation & Pavement Design 24 Hospital Road, Wentworth, NSW	- Proposed V	Ventwor	rth I	Health S	ervice Re	edevelopr	ment,	Scale: As shown	_	
	Client: JBS&G - Sydney, NSW								Seepage @ 4.8m to 6.4m	-	

							Dar	Form R4 Revised
	AITKEN ROWE TESTING LABC	ORATORI	ES PT	Y LTC)			ehole No.: 1 Sheet No.: 2 of 2
		Ground Le	vel: Exist	ing				Date: 9/08/2022
		Method: A	Auger Dri	lling with	TC Bit			GPS N: 6225203 (R/L: 39m)
	1			1				E: 0585067
poq		Ê	a =	ر /			est	
Sym	Description	Depth (m)	Moisture Condition	Consistency/ Rel. Density	Sar	nple	Field Test	Remarks & Field Records
USCS Symbol		Dept	Moi	onsis el. E			Fie	
Ď				υ≃	Туре	No.	SPT	1
SC	Clayey SAND; fine to medium grained, fines of medium		W	MD			SPT	
	plasticity, yellow grey	_			D	11	4, 5, 5	LS = 7.0%
		_					N = 10	FMC = 26.3%
СН	CLAY; high plasticity, with fine to medium sand, grey	6.5	MC>PL	St.		-		End of Seepage
							6.45	
		7.0						
		7.5						
	End of Borehole (BH1) @ 7.5m							
		_						
		_						
		8.0						
		-						
		8.5						
		_						
		9.0						
		9.5						
		E						
		_						
		10.0						
		-						
		10.5						
		F						
		11.0						
		_						
		11.5						
		-						
		E						
	1	12.0		I		1	1	
	Registration No.: S22-348							Logged By: PFT
	Location: Geotechnical Investigation & Pavement Desig	in - Pronosed M	lentworth	h Health (ervice Dr	develor	ment	
	24 Hospital Road, Wentworth, NSW	n - Froposeu M	entworth	i neuitii S	CI VILE RE	летеюрі	110111,	Scale: As shown
	Client: JBS&G - Sydney, NSW		Seepage @ 4.8m to 6.4m					

	AITKEN ROWE TESTING LABOR	KATOR	IES PT	YLTC)			ehole No.: 2 Sheet No.: 1 of 2			
		Ground L Method:		-	TC Bit			Date: 9/08/2022 GPS N: 6225247 (R/L: 39m) E: 0585120			
USCS Symbol	Description	Depth (m)	Moisture Condition	Consistency/ Rel. Density	Sample		Field Test	Remarks & Field Records	Piezometer		
ИL	FILL/TOPSOIL: Sandy SILT; low plasticity, fine to coarse	_	MC <pl< td=""><td>F</td><td>Туре</td><td>No.</td><td>SPT</td><td>FILL: Appears moderately compacted</td><td>П</td></pl<>	F	Туре	No.	SPT	FILL: Appears moderately compacted	П		
СН	sand, grey FILL: Silty CLAY; high plasticity, with fine to coarse sand, grey yellow	÷	MC>PL	St.	D	2A		'Uncontrolled'			
Ή	CLAY; high plasticity, with fine to medium sand, grey	0.5	MC>PL	-	U50	28		NATURAL LS = 13.5% FMC = 18.0%			
-CH	Silty CLAY; medium to high plasticity, with fine to medium sand, yellow	1.0	MC <pl< td=""><td>-</td><td>030</td><td>20</td><td></td><td>Iss = 3.87</td><td></td></pl<>	-	030	20		Iss = 3.87			
					D	2C	4.5				
CH	CLAY; high plasticity, with fine to medium sand, yellow grey	1.5	MC>PL		D	2D	1.5 SPT 6, 7, 9 N = 16				
		2.0 				-	1.95				
		2.5 									
							3.0				
СН	CLAY; high plasticity, trace sand, grey			VSt.	D	2E	SPT 6, 9, 11 N = 20				
		3.5 				-	3.45				
		4.0									
		4.5					4.5	Post drilling Seepage @ 4.4m			
				St.	D	2F	SPT 4, 5, 6 N = 11	Piezo installed LS = 11.0% FMC = 25.3%			
		5.0 				-	4.95				
CI	Silty CLAY; medium plasticity, with fine to medium sand,	5.5									
	grey yellow	6.0									
	Registration No.: 522-348		1	1	L	1	1	Logged By: PFT			
	Location: Geotechnical Investigation & Pavement Design 24 Hospital Road, Wentworth, NSW	- Proposed V	Ventwortl	h Health S	ervice Re	edevelopi	nent,	Scale: As shown			
	24 Hospital Road, Wentworth, NSW Client: JBS&G - Sydney, NSW							Seepage @ 6.0m to 7.5m (EOBH)			

	AITKEN ROWE TESTING LABO	RATORI	ES PT	Y LTC)			Form R4 Revised
		Ground Le Method: A			TC Bit			Sheet No.: 2 of 2 Date: 9/08/2022 GPS N: 6225247 (R/L: 39m) E: 0585120
USCS Symbol	Description	Depth (m)	Moisture Condition	Consistency/ Rel. Density	Sample		Field Test	Remarks & Field Records
CI	Silty CLAY; medium plasticity, with fine to medium sand, grey yellow		MC>PL	St.	Type D	No. 2G	SPT SPT 5, 6, 9 N = 15	Seepage @ 6.0m to 7.5m (EOBH)
SC	Clayey SAND; fine to medium grained, fines of medium plasticity, yellow	6.5 7.0	W	MD	D	2H	6.45	
	End of Borehole (BH2) @ 7.5m	 						
		8.0 8.5 8.5 9.0 9.5 9.5 10.0 						
	Registration No.: 522-348	Drc	lant	h 11!!!	and- C	ada:1	mart	Logged By: PFT
	Location: Geotechnical Investigation & Pavement Desigr 24 Hospital Road, Wentworth, NSW	ı - Proposed V	rentworti	i Health S	ervice Re	eaevelopi	nent,	Scale: As shown
	Client: JBS&G - Sydney, NSW							Seepage @ 6.0m to 7.5m (EOBH)

		Ground Le Method: /		-	TC Bit			Sheet No.: 1 of 2 Date: 10/08/2022 GPS N: 6225245 (R/L: 39m) E: 0585074	1
	Description	Depth (m)	Moisture Condition	Consistency/ Rel. Density		Sample		Remarks & Field Records	Piezometer
۸L	FILL/TOPSOIL: Sandy SILT; low plasticity, fine to coarse		MC>PI	L S	Туре	No.	SPT	FILL: Appears poorly compacted	
1	sand, grey FILL: Sandy CLAY; medium plasticity, fine to coarse sand,	<u> </u>		S-F				'Uncontrolled'	
	trace gravel, trace concrete, trace bricks, grey brown				D	ЗA			
		0.5							
		_ _		-		_		NATURAL	_
Н	CLAY; high plasticity, trace sand, grey	E		F	D	3B		NATURAL	
		1.0							
Ή	Silty CLAY; high plasticity, trace sand, yellow			St.	D	зc			
		E				50			
		1.5		F		_	1.5 SPT	+	
		F			D	3D	2, 2, 3		
							N = 5		
		2.0				_	1.95		
		-							Ē
:H	City CLAV, high plasticity, trace and gray	2.5		St.		_			
п	Silty CLAY; high plasticity, trace sand, grey	2.5		51.	D	ЗE			
		-				52			Ē
		3.0					3.0		Ē
		3.0					SPT		=
		–			D	3F	3, 4, 5 N = 9	LS = 18.0% FMC = 27.3%	=
		3.5				_	N - 9	-	Ē
		_					3.45		
		E							
		4.0							
		_							
		E							
		4.5					4.5		Ē
		-					SPT		
		F			D	3G	3, 5, 5 N = 10		
		5.0				-		Post drilling Seepage @ 4.9m	
		-					4.95		Ē
		F							
		5.5							
SC	Clayey SAND; fine to medium grained, fines of medium	ᡶ	W	MD	-			Seepage @ 5.6m to 7.5m (EOBH)	
	plasticity, grey yellow	F							
		6.0						Piezo installed	
	Registration No.: S22-348							Logged By: PFT	
	Location: Geotechnical Investigation & Pavement Design	- Proposed V	Ventwor	th Health	Service R	edevelopi	ment,	Scale: As shown	
	24 Hospital Road, Wentworth, NSW								

	AITKEN ROWE TESTING LABO	RATORI	ES P)			Form R4 Revised
		Ground Le Method: /	evel: Exis	ting			<u> </u>	Sheet No.: 2 of 2 Date: 10/08/2022 GPS N: 6225245 (R/L: 39m) E: 0585074
USCS Symbol	Description	Depth (m)	Moisture Condition	Consistency/ Rel. Density	Sample		Field Test	Remarks & Field Records
- 5C	Clayey SAND; fine to medium grained, fines of medium plasticity, grey yellow		w	MD	Type D	No. 3H	SPT SPT 4, 4, 7 N = 11	
		6.5 				-	6.45	
		7.0 						
	End of Borehole (BH3) @ 7.5m							
		8.0 						
		8.5 						
		9.0						
		9.5						
		10.5						
		11.0						
		11.5 						
		12.0						
	Registration No.: S22-348 Location: Geotechnical Investigation & Pavement Design 24 Hospital Road, Wentworth, NSW	n - Proposed V	Ventwor	h Health S	Service Re	edevelopi	ment,	Logged By: PFT Scale: As shown
	Client: JBS&G - Sydney, NSW							Seepage @ 5.6m to 7.5m (EOBH)

	AITKEN ROWE TESTING LABO	Ground Le					<u> </u>	Sheet No.: 1 of 2 Date: 10/08/2022				
		Method: /		-	rc Bit	GPS N: 6225258 (R/L: 39m) E: 0585050						
USCS Symbol	Description	Depth (m)	Moisture Condition	Consistency/ Rel. Density	Sample		Field Test	Remarks & Field Records	Piezometer			
ML	FILL/TOPSOIL: Sandy SILT; low plasticity, fine to coarse		MC>PL	S	Туре	No.	581	FILL: Appears poorly compacted				
ML	sand, grey FILL: Sandy SILT; low plasticity, fine to coarse sand, trace gravel, orange brown			S-F				'Uncontrolled'				
СН	FILL: CLAY; high plasticity, with fine to coarse sand, trace gravel, grey brown	0.5		St.	D	4A		FILL: Appears moderately compacted 'Uncontrolled'				
СН	CLAY; high plasticity, trace sand, grey	1.0			U50	4B		NATURAL LS = 15.5% FMC = 20.1%				
CI	Silty CLAY; medium plasticity, trace sand, yellow	 		F-St.		-		lss = 3.63				
		1.5 			D	4C	1.5 SPT 3, 3, 5	LS = 10.0% FMC = 26.8%	1994			
		2.0				-	N = 8 1.95	-				
I-CH	CLAY; medium to high plasticity, trace sand, grey yellow	3.0				45	3.0 SPT	LS = 12.5% EMC = 27.6%				
		3.5			D	4D	3, 3, 4 N = 7 3.45	Post drilling Seepage @ 3.2m				
СН	CLAY; high plasticity, trace sand, grey orange			F			3.45					
		4.0 										
SC	Clayey SAND; fine to medium grained, fines of medium	4.5	w	L		-	4.5	Seepage @ 4.5m to 7.5m (EOBH)				
	plasticity, grey orange				D	4E	SPT 2, 2, 4 N = 6					
		5.0 					4.95					
		5.5 										
		 						Piezo installed				
	Registration No.: S22-348		_	_	_	_	_	Logged By: PFT				
	Location: Geotechnical Investigation & Pavement Design	- Proposed V	Ventwort	h Health S	ervice Re	edevelopr	nent,	Scale: As shown				
	24 Hospital Road, Wentworth, NSW Client: JBS&G - Sydney, NSW							Seepage @ 4.5m to 7.5m (EOBH)				

	AITKEN ROWE TESTING LABO	RATORI	ES PI)			Form R4 Revised
		Ground Le Method: A	evel: Exis	ting			<u> 5</u>	Sheet No.: 2 of 2 Date: 10/08/2022 GPS N: 6225258 (R/L: 39m) E: 0585050
usus symbol	Description	Depth (m)	Moisture Condition	Consistency/ Rel. Density	Sample		Field Test	Remarks & Field Records
C	Clayey SAND; fine to medium grained, fines of medium plasticity, grey orange		w	MD	Type D	No. 4F	SPT SPT 5, 5, 6 N = 11	
		6.5 7.0					6.45	
	End of Borehole (BH4) @ 7.5m							
		8.0 8.0 8.5 9.0						
		9.5 9.5 10.0						
		10.5						
		11.0 11.5 						
	Registration No.: S22-348 Location: Geotechnical Investigation & Pavement Design	12.0 n - Proposed W	 /entwort	h Health S	Service Re	edevelopr	nent,	Logged By: PFT Scale: As shown
	24 Hospital Road, Wentworth, NSW Client: JBS&G - Sydney, NSW							Seepage @ 4.5m to 7.5m (EOBH)

		AITKEN ROWE TESTING LABORATORIES PTY LTD									
_		Ground Lo Method:			TC Bit			Date: 10/08/2022 GPS N: 6225304 (R/L: 41m) E: 0585048			
USCS Symbol	Description	Depth (m)	Moisture Condition	Consistency/ Rel. Density		Sample		Remarks & Field Records			
CI	FILL: Sandy CLAY; medium plasticity, fine to coarse sand, trace gravel, orange		MC <pl< th=""><th>St.</th><th>Туре</th><th>No.</th><th>SPT</th><th>FILL: Appears moderately compacted</th></pl<>	St.	Туре	No.	SPT	FILL: Appears moderately compacted			
CH	FILL: CLAY; high plasticity, with fine to coarse sand, trace gravel, grey brown	0.5	MC>PL	-	D	5A		'Uncontrolled'			
CH	FILL: CLAY; high plasticity, trace sand, grey			StVSt.	D	5B					
		1.0 				-					
		1.5					1.5	-			
		 			D	5C	SPT 5, 7, 9 N = 16				
CI	Silty CLAY; medium plasticity, trace sand, grey yellow		MC <pl< td=""><td>VSt.</td><td></td><td></td><td>1.95</td><td>NATURAL</td></pl<>	VSt.			1.95	NATURAL			
		2.5									
							3.0				
					D	5D	SPT 7, 11, 15 N = 26	•			
		3.5				-	3.45	-			
		4.0									
СН	CLAY; high plasticity, trace sand, grey	4.5	MC=PL	StVSt.		-	4.5 SPT				
		 5.0			D	5E	6, 9, 9 N = 18	-			
							4.95				
		5.5 									
	<u></u>	6.0	<u>' </u>	I	I	I	I				
	Registration No.: S22-348 Location: Geotechnical Investigation & Pavement Design	n - Proposed V	Ventwort	h Health S	Service Re	edevelopi	nent,	Logged By: PFT Scale: As shown			
	24 Hospital Road, Wentworth, NSW Client: JBS&G - Sydney, NSW							Seepage @ 6.7m to 8.0m			

	AITKEN ROWE TESTING LABO	RATORI	ES PT	Y LTC)			Form R4 Revised 1 ehole No.: 5
		Ground Le Method: A	evel: Exist	ing			<u> </u>	Sheet No.: 2 of 2 Date: 10/08/2022 GPS N: 6225304 (R/L: 41m) E: 0585048
USCS Symbol	Description	Depth (m)	Moisture Condition	Consistency/ Rel. Density	Sample		Field Test	E: 0585048 Remarks & Field Records
СН	CLAY; high plasticity, with fine to medium sand, grey		MC>PL	StVSt.	Type D	No. 5F	SPT SPT 4, 6, 9 N = 15	
SC	Clayey SAND; fine to medium grained, fines of medium plasticity, grey orange	6.5 7.0	w	MD			6.45	Seepage @ 6.7m to 8.0m (EOBH)
		7.5						
	End of Borehole (BH5) @ 8.0m	 			D	5G	SPT 6, 5, 5 N = 10	
		8.5 9.0 9.5						
		10.0 10.0 10.5						
		11.0						
		11.5 						
	Registration No.: 522-348 Location: Geotechnical Investigation & Pavement Design 24 Hospital Road, Wentworth, NSW	n - Proposed W	/entworti	h Health S	Service Re	edevelopr	nent,	Logged By: PFT Scale: As shown
	Client: JBS&G - Sydney, NSW							Seepage @ 6.7m to 8.0m (EOBH)

Crownel (seek: fasting Method: Auges Drilling with TC BL Disk: JUMP/2022 (SPS: K225211 (ME2309)) E: 058028 Description U U View Signed		AITKEN ROWE TESTING LABO	RATOR	IES PT	Y LTC)			ehole No.: 6 Sheet No.: 1 of 2
Description Figure of the scame and, give Sample S					-	TC Bit		. ~	Date: 10/08/2022
A A B B B B B B File No. SFT PLUTONOL body 001; budy plasticity, with fine to course sund, trace gravel, gray Image: CAP; melium plasticity, with fine to course Image: CAP; melium plasticity, with fine to medium and, gray Image: CAP; melium plasticity, with fine to medium and, gray Image: CAP; melium plasticity, with fine to medium and, gray Image: CAP; melium plasticity, with fine to medium and, gray Image: CAP; melium plasticity, trace sand, yellow Image: CAP; melium plasticity, trace sand, yellow Image: CAP; melium to high plasticity, trace sand, yellow Image: CAP; melium to high plasticity, trace sand, yellow Image: CAP; melium to high plasticity, trace sand, yellow Image: CAP; melium to high plasticity, trace sand, yellow Image: CAP; melium to high plasticity, trace sand, yellow Image: CAP; melium to high plasticity, trace sand, yellow Image: CAP; melium to high plasticity, trace sand, yellow Image: CAP; melium to high plasticity, trace sand, yellow Image: CAP; melium to high plasticity, trace sand, yellow Image: CAP; melium to high plasticity, trace sand, yellow Image: CAP; melium to high plasticity, trace sand, yellow Image: CAP; melium to high plasticity, trace sand, yellow Image: CAP; melium to high plasticity, trace sand, yellow Image: CAP; melium to high plasticity, trace sand, yellow Image: CAP; melium to high plasticity, trace sand, yellow Image: CAP; melium to high plasticity, trace sand, yellow Image: CAP; melium to high plasticity, trace sand, yellow Image: CAP; melium to high plasticity, trace sand, yell						-			E: 0585028
Introduction using all line advances using grey Interference MC-6PL St. Interference FLL Appcorpredictive compacted Start, Urace gravel, grey 0.5 MC-6PL St. Interference NATURAL CAY; high plasticity, with fine to medium sand, grey 1.0 MC-6PL F 0 66 Start CAY; high plasticity, with fine to medium sand, grey 1.0 Start CAY; high plasticity, trace sand, yellow Interference Start CAY; high plasticity, trace sand, yellow Interference Start CAY; high plasticity, trace sand, grey Interference Start CAY; high plasticity, with fine to medium sand, yellow Interference Start CAY; high plasticity, with fine to medium sand, yellow Interference Start CAY; high plasticity, with fine to medium sand, yellow F-5t. 0 60 Start CAY; high plasticity, with fine to medium sand, yellow Interference Start CAY; high plasticity, with fine to medium sand, yellow F-5t. 0 66 Start CAY; high plasticity, with fine to medium sand, yellow Interference Start CAY; high plasticity, with fine to medium sand, yellow F-5t. 0 66 Start CAY; high plasticity, with fine to medium grained, fines of medium Start CAY; high plasticity, with fine to medium grained, fines of medium Start CAY; high plasticity, with fine to medium grained, fines of medium St	USCS Symbol	Description	Depth (m)	Moisture Condition	Consistency/ Rel. Density		Sample		Remarks & Field Records
FILL: Stry CLAY, medium platticity, with fine to casese and, trace gravel, gray 0.5 MC-FL F 0 6.6 NATURAL IS -13.5%. PMC = 23.3%. CLAY; high plasticity, with fine to medium and, grey -10 VSL 0 6.6 5.71 NATURAL IS -13.5%. PMC = 23.3%. N Shy CLAY; medium to high plasticity, trace sind, yellow -10 VSL 0 6.6 5.71 NATURAL IS -13.5%. PMC = 23.3%. CLAY; high plasticity, trace sand, grey -3.0 VSL 0 6.6 5.71 NATURAL IS -13.0%. PMC = 23.3%. CLAY; high plasticity, trace sand, grey -3.0 -4.0	ML	EIII / TORSOIL - Sandy SILT: Jow plasticity, find to coarse sand, gray		MCZPI	St.	Type	No.	SPT	FILL: Appears moderately compacted
All Sithy CLAY; medium to high plasticity, trace sand, yellow 1.5 0 6.4 1.5 5.7 5.9 <td>CI</td> <td>FILL: Silty CLAY; medium plasticity, with fine to coarse</td> <td>0.5</td> <td>MUCAPE</td> <td>51.</td> <td></td> <td></td> <td></td> <td></td>	CI	FILL: Silty CLAY; medium plasticity, with fine to coarse	0.5	MUCAPE	51.				
LAX:	CH	CLAY; high plasticity, with fine to medium sand, grey	1.0	MC>PL	F	D	6A		LS = 13.5%
LAX:	I-CH	Silty CLAY: medium to high plasticity, trace sand, yellow			S+ _\/S+				
CLAY; high plasticity, trace sand, grey 3.0 FSt. D 6C SPT 6, 9, 11 N = 20 LS = 13.0% FMC = 18.8% CLAY; high plasticity, trace sand, grey 3.0 D 6D 60 6, 11 N = 19 CLAY; high plasticity, trace sand, grey 3.0 D 6D 60 6, 11 N = 13.0% CLAY; high plasticity, with fine to medium sand, yellow FSt. D 6D 6E ST 7, 12 Sepage @ 5.0m to 7.5m (EOBH) CLAY; high plasticity, grey orange S.0 W MD H H H CLAY; high plasticity, with fine to medium sand, yellow S.0 W MD FSt. Sepage @ 5.0m to 7.5m (EOBH) Clayey SAND; fine to medium grained, fines of medium plasticity, grey orange Sepage @ 5.0m to 7.5m (EOBH) Sepage @ 5.0m to 7.5m (EOBH) Sepage @ 5.0m to 7.5m (EOBH)	i ch	Sincy CEAT, includin to high plasticity, trace suita, yehow	- 15		JI. VJI.	D	6B	15	
CLAY; high plasticity, with fine to medium sand, yellow GLAY; high plasticity, with fine to medium sand, yellow GCLAY; high plasticity, grey orange. Clayers SAND; fine to medium grained, fines of medium plasticity, grey orange. GCLAY; high plasticity, grey orange. GCLAY; high plasticity grey orange. GCLA			1.5		VSt.				+
CLAY; high plasticity, trace sand, grey CLAY; high plasticity, with fine to medium sand, yellow Grey CLAY; high plasticity, with fine to medium sand, yellow Grey CLAY; high plasticity, with fine to medium sand, yellow Grey CLAY; high plasticity, with fine to medium sand, yellow Grey CLAY; high plasticity, with fine to medium sand, yellow Grey CLAY; high plasticity, with fine to medium sand, yellow Grey CLAY; high plasticity, with fine to medium sand, yellow Grey CLAY; high plasticity, with fine to medium sand, yellow Grey CLAY; high plasticity, with fine to medium grained, fines of medium Basic Clay of the to medium grained, fines of medium Clay of the to medium Clay of the			2.0			D	6C	6, 9, 11	
CLAY; high plasticity, trace sand, grey								1.95	
CLAY; high plasticity, with fine to medium sand, yellow -3.0 -3.0 -3.0 -3.0 CLAY; high plasticity, with fine to medium sand, yellow -3.0 -5.5 -4.5 -4.5 -4.5 Gray -4.5 -5.5 -5.0 -5.5 -5.5 -5.5 -5.5 Clay:y SAND; fine to medium grained, fines of medium -5.5 W MD -6.0 -6.0 Registration No:: 522-348 Location: Geotechnical Investigation & Proposed Wentworth Health Service Redevelopment. Logged By: PFT Scalar: 45 chown			2.5						
CLAY; high plasticity, with fine to medium sand, yellow a.5 a.6 b.7 c.LAY; high plasticity, with fine to medium sand, yellow a.6 c.LAY; high plasticity, with fine to medium sand, yellow a.6 b.7 c.LAY; high plasticity, with fine to medium sand, yellow c.LAY; high plasticity, with fine to medium sand, yellow c.LAY; high plasticity, with fine to medium sand, yellow c.LAY; high plasticity, with fine to medium sand, yellow c.LAY; high plasticity, with fine to medium sand, yellow c.LAY; high plasticity, with fine to medium sand, yellow c.LAY; high plasticity, with fine to medium sand, yellow c.LAY; high plasticity, with fine to medium sand, yellow c.LAY; high plasticity, grey orange c.Lay yellow c.Lay yellow d.Lay yel	СН	CLAY; high plasticity, trace sand, grey							
CLAY; high plasticity, with fine to medium sand, yellow grey			3.0			D	6D	SPT	
CLAY; high plasticity, with fine to medium sand, yellow -4.0 F-St. -4.5 grey -4.0 -4.5 -4.5 4.0 -4.5 -5.7 -7 6.0 -5.0 -6.0 -6.0 -6.0 Clayey SAND; fine to medium grained, fines of medium plasticity, grey orange -5.0 W MD -6.0 Registration No.: S22-348 Location: Geotechnical Investigation & Pavement Design - Proposed Wentworth Health Service Redevelopment, Logged By: PFT Srale: As shown			3.5				-	N = 19	-
grey			_					3.45	
Clayey SAND; fine to medium grained, fines of medium plasticity, grey orange 5.0 W MD A.95 Seepage @ 5.0m to 7.5m (EOBH) Registration No.: 522-348 6.0 W MD Issue and the service Redevelopment, scale: As shown	СН		4.0		F-St.				
Clayey SAND; fine to medium grained, fines of medium plasticity, grey orange M M M M M M MD Seepage @ 5.0m to 7.5m (EOBH) Registration No.: S22-348 Location: Geotechnical Investigation & Pavement Design - Proposed Wentworth Health Service Redevelopment, Logged By: PFT Scala: A schown			4.5					4.5	
Clayey SAND; fine to medium grained, fines of medium plasticity, grey orange 4.95 Seepage @ 5.0m to 7.5m (EOBH) Clayey SAND; fine to medium grained, fines of medium plasticity, grey orange W MD MD Registration No.: S22-348 Logged By: PFT Logged By: PFT Location: Geotechnical Investigation & Pavement Design - Proposed Wentworth Health Service Redevelopment, Scale: As shown						D	6E	3, 3, 4	
Clayey SAND; fine to medium grained, fines of medium plasticity, grey orange W MD Basicity, grey orange 6.0 MD Registration No.: S22-348 Logged By: PFT Location: Geotechnical Investigation & Pavement Design - Proposed Wentworth Health Service Redevelopment, Scale: As shown			5.0				-	4.95	Seepage @ 5.0m to 7.5m (EOBH)
plasticity, grey orange			5.5						
Registration No.: S22-348 Logged By: PFT Location: Geotechnical Investigation & Pavement Design - Proposed Wentworth Health Service Redevelopment, Scale: As shown	SC				MD				
Location: Geotechnical Investigation & Pavement Design - Proposed Wentworth Health Service Redevelopment,			0.0	<u>' </u>	1		<u>I</u>	1	
24 Hospital Road, Wentworth, NSW		Location: Geotechnical Investigation & Pavement Desigr	- Proposed V	Ventwort	h Health S	ervice Re	edevelopi	ment,	
		24 Hospital Road, Wentworth, NSW							
Client: JBS&G - Sydney, NSW Seepage @ 5.0m to 7.5m (EOBH)		Client: JBS&G - Sydney, NSW							Seepage @ 5.0m to 7.5m (EOBH)

	AITKEN ROWE TESTING LABO	RATORI	ES PT	Y LTC)			Form R4 Revised
		Ground Le Method: A	evel: Exis	ting			<u> </u>	Sheet No.: 2 of 2 Date: 10/08/2022 GPS N: 6225211 (R/L: 39m) E: 0585028
USCS Symbol	Description	Depth (m)	Moisture Condition	Consistency/ Rel. Density		nple	Field Test	Remarks & Field Records
SC	Clayey SAND; fine to medium grained, fines of medium plasticity, grey orange	 	w	MD	Type D	No. 6F	SPT SPT 5, 5, 5 N = 10	
		7.0					6.45	
	End of Borehole (BH6) @ 7.5m	7.5						
		8.0 						
		8.5 9.0						
		 9.5						
		 10.0						
		10.5 						
		11.0						
		11.5 						
	Registration No.: S22-348 Location: Geotechnical Investigation & Pavement Design			h Health S	Gervice Re	edevelopr	ment,	Logged By: PFT
	24 Hospital Road, Wentworth, NSW Client: JBS&G - Sydney, NSW							Scale: As shown Seepage @ 5.0m to 7.5m (EOBH)

	AITKEN ROWE TESTING LABO	RATORI	ES PI		2			ehole No.: 7 Sheet No.: 1 of 2
		Ground Le	evel: Exis	ting				Date: 9/08/2022
		Method: A		•	TC Bit			GPS N: 6225205 (R/L: 39m)
		incentour,	uger bri		TO DIC			E: 0585132
_							l	
USCS symbol		Ê	o re	Consistency/ Rel. Density			Field Test	
syr	Description	Depth (m)	Moisture Condition	istei Den	Sar	nple	eld	Remarks & Field Records
S		Dep	Con	onsi el. [Ĕ	
Ď		_		ŭ "	Туре	No.	SPT	+
ΛL	FILL/TOPSOIL: Sandy SILT; low plasticity, fine to coarse sand, grey		MC>PL	F	.,,,,,			FILL: Appears poorly compacted
CI	FILL: Sandy CLAY; medium plasticity, fine to coarse sand,				_			'Uncontrolled'
	trace gravel, brown				D	7A		
Н	CLAY; high plasticity, trace sand, grey			S				NATURAL
		0.5						
				F				
					U50	7B		LS =15.5%
		_						FMC = 25.3%
		1.0						lss = 3.84
		1.0						
СН	Silty CLAY; medium to high plasticity, trace sand, yellow	_				1		
		E			D	7C		
		Ē				1		
		1.5		<u> </u>	<u> </u>	4	1.5	ļ
		<u> </u>		St.			SPT	LS = 11.5%
		-			D	7D	4, 7, 7	FMC = 24.2%
		-					N = 14	1100 - 24.270
		2.0						-
							1.95	
		_						
		2.5						
н	Silty CLAY; high plasticity, trace sand, grey	2.5		StVSt	-			
	Sirty en (1, ingli plusticity, trace sund, grey	-		50. 150				
		3.0					3.0	
		_					SPT	10 17 0%
		_			D	7E	5, 8, 10	LS = 17.0% FMC = 23.0%
		-					N = 18	1100 - 23.070
		3.5						
							3.45	
		4.0						
		4.0						
		_						
		Ē						
		4.5				4	4.5	4
		<u> </u>		St.			SPT	
		\vdash			D	7F	4, 6, 7	
		<u> </u>					N = 13	
		5.0			L	-		4
							4.95	
		Ľ						
		\vdash			1			
		5.5						
		<u> </u>						
		–						
с	Clayey SAND; fine to medium grained, fines of medium	1	W	MD	1			Seepage @ 5.8m to 7.5m (EOBH)
	plasticity, yellow	6.0						, _ ,
	Registration No.: S22-348							Logged By: PFT
	- Location: Geotechnical Investigation & Pavement Design	- Pronoced M	/entwort	h Health	Service P	develor	nent	
	24 Hospital Road, Wentworth, NSW	i i oposeu M	. cntwort	culti	SCIVILE RE	acverupt		Scale: As shown
								Seepage @ 5.8m to 7.5m (EOBH)
	Client: JBS&G - Sydney, NSW							

	AITKEN ROWE TESTING LABO	RATORI	ES PI)			Form R4 Revised
		Ground Le Method: /	evel: Exis	ting			<u> </u>	Sheet No.: 2 of 2 Date: 9/08/2022 GPS N: 6225205 (R/L: 39m) E: 0585132
indamye elev	Description	Depth (m)	Moisture Condition	Consistency/ Rel. Density		nple	Field Test	Remarks & Field Records
SC .	Clayey SAND; fine to medium grained, fines of medium plasticity, yellow	 6.5	W	MD	Type D	No. 6G	SPT SPT 4, 5, 8 N = 13	
		7.0					6.45	
	End of Borehole (BH7) @ 7.5m	7.5 						
	Registration No.: S22-348 Location: Geotechnical Investigation & Pavement Design 24 Hospital Road, Wentworth, NSW	n - Proposed W	/entwort	h Health S	Service Re	edevelopr	nent,	Logged By: PFT Scale: As shown
	Client: JBS&G - Sydney, NSW							Seepage @ 5.8m to 7.5m (EOBH)

4/2 Riedell Street, Wagga Wagga NSW 2650

Pavement & Subgrade Investigation - Materials Schedule and Log

CLIENT:	JBS&G - SY	DNEY, NS	N										PAGE: 1 OF 2
PROJECT:	GEOTECHI	NICAL INVE	STIGATIO	N & PAVEMENT DESIGN									DATE: 11/08/2022
	PROPOSE	D WENTWO	ORTH HEAL	TH SERVICE REDEVELOPMENT, No. 24 HOSPITAL ROAD, WENTWORT	TH, NSW								RECO. NO 622.240
STAFF:				SAMPLING METHOD : AS1289.1.2.1 CLAUSE : 6.5.3									REGO. NO.: S22-348
Borehole No. and Location	Layer Sample No.	Depth (mm)	Group Symbol	Field Description (layer, type, plasticity / particle size, colour, secondary components)	Moisture Conditions	Strength Comments	(OM (FMC/O	Moistures MC=Field M C=Optimum MC=Moistu	IC) h MC) re Ratio)	Dynam Penetro (NB not o lab soak	ometer equiv. to ed CBR)	(CBR%)	Other Comments
							OMC	FMC	FMC/ OMC	Depth In Subgrade (mm)	Equiv. CBR %	10 day (95% Rel. Comp.)	
BH8	F8	0-400	CI	FILL: Silty CLAY; medium plasticity, with fine to coarse sand, trace gravel, orange	MC <pl< td=""><td>VSt.</td><td></td><td></td><td></td><td></td><td></td><td></td><td>FILL: Appears moderately compacted</td></pl<>	VSt.							FILL: Appears moderately compacted
N: 6225233				brown									'Uncontrolled'
E: 0585170	SG8	400-1000	СН	CLAY; high plasticity, with fine to medium sand, grey	MC>PL	F	21.2	17.0	0.80	400-1000	5	3.5	NATURAL
R/L: 40m		1000-1500	CI-CH	Silty CLAY; medium to high plasticity, trace sand, yellow	MC>PL	St.				1000-1500	8		
				End of Borehole (BH8) @ 1.5m									
BH9		0-200	ML	FILL: Sandy SILT; low plasticity, fine to coarse sand, orange brown	MC <pl< td=""><td>S</td><td></td><td></td><td></td><td></td><td></td><td></td><td>FILL: Appears poorly compacted 'Uncontrolled' FILL: Appears poorly compacted</td></pl<>	S							FILL: Appears poorly compacted 'Uncontrolled' FILL: Appears poorly compacted
N: 6225271	F9	200-400	СН	FILL: CLAY; high plasticity, with fine to coarse sand, trace gravel, grey brown	MC>PL	S-F							FILL: Appears poorly compacted 'Uncontrolled'
E: 0585189	SG9	400-800	СН	CLAY; high plasticity, with fine to medium sand, grey	MC>PL	F	21.7	17.1	0.79	400-800	5	3	NATURAL
R/L: 40m		800-1500	СН	CLAY; high plasticity, with fine to medium sand, grey	MC>PL	St.		1/11	0.75	800-1500	11	5	
				End of Borehole (BH9) @ 1.5m									
BH10		0-100	ML	FILL/TOPSOIL: Sandy SILT; low plasticity, fine to coarse sand, grey	MC>PL	F							FILL: Appears poorly compacted 'Uncontrolled' FILL: Appears moderately compacted
N: 6225299	F10	100-400	СН	FILL: Sandy CLAY; high plasticity, fine to coarse sand, trace gravel, grey brown	MC <pl< td=""><td>StVSt.</td><td></td><td></td><td></td><td></td><td></td><td></td><td>FILL: Appears moderately compacted</td></pl<>	StVSt.							FILL: Appears moderately compacted
E: 0585124	SG10	400-1200	СН	CLAY; high plasticity, trace sand, grey	MC <pl< td=""><td>VSt.</td><td>20.9</td><td>13.8</td><td>0.66</td><td>400-1200</td><td>20</td><td>3</td><td>NATURAL</td></pl<>	VSt.	20.9	13.8	0.66	400-1200	20	3	NATURAL
R/L: 39m		1200-1500	CI	Silty CLAY; medium plasticity, trace sand, yellow	MC <pl< td=""><td>VSt.</td><td></td><td></td><td></td><td>1200-1500</td><td>22</td><td></td><td></td></pl<>	VSt.				1200-1500	22		
				End of Borehole (BH10) @ 1.5m									
BH11		0-400	CI	FILL: Sandy CLAY; medium plasticity, fine to coarse sand, trace gravel, grey	MC <pl< td=""><td>F-St.</td><td></td><td></td><td></td><td></td><td></td><td></td><td>FILL: Appears poorly compacted 'Uncontrolled'</td></pl<>	F-St.							FILL: Appears poorly compacted 'Uncontrolled'
N: 6225279		400-800	СН	CLAY; high plasticity, with fine to medium sand, grey	MC>PL	F				400-800	3		NATURAL
E: 0585124	SG11	800-1500	CI	Silty CLAY; medium plasticity, trace sand, yellow	MC>PL	F	17.7	19.2	1.08	800-1500	3	4	
R/L: 39m				End of Borehole (BH11) @ 1.5m									
BH12		0-200	ML	FILL/TOPSOIL: Sandy SILT; low plasticity, fine to coarse sand, grey	MC>PL	S							FILL: Appears poorly compacted 'Uncontrolled'
N: 6225308	SG12	200-600	СН	CLAY; high plasticity, with fine to medium sand, grey	MC>PL	St.	22.0	15.9	0.72	200-600	9	3	NATURAL
E: 0585087		600-1500	CI	Silty CLAY; medium plasticity, trace sand, yellow	MC <pl< td=""><td>StVSt.</td><td></td><td></td><td></td><td>600-1500</td><td>17</td><td></td><td></td></pl<>	StVSt.				600-1500	17		
R/L: 39m				End of Borehole (BH12) @ 1.5m									

4/2 Riedell Street, Wagga Wagga NSW 2650

Pavement & Subgrade Investigation - Materials Schedule and Log

CLIENT:	JBS&G - SY	DNEY, NS	V										PAGE: 2 OF 2
PROJECT:	GEOTECHI	NICAL INVE	STIGATIO	N & PAVEMENT DESIGN									DATE: 11/08/2022
	PROPOSEI	D WENTWO	ORTH HEAL	TH SERVICE REDEVELOPMENT, No. 24 HOSPITAL ROAD, WENTWOR	TH, NSW								REGO. NO.: S22-348
STAFF:	PFT			SAMPLING METHOD : AS1289.1.2.1 CLAUSE : 6.5.3									REGU. NU.: 322-346
Borehole No. and Location	Layer Sample No.	Depth (mm)	Group Symbol	Field Description (layer, type, plasticity / particle size, colour, secondary components)	Moisture Conditions	Strength Comments	(OM	Moistures MC=Field M C=Optimun MC=Moistu	1C) 1 MC)	Dynam Penetro (NB not o lab soak	ometer equiv. to ed CBR)	(CBR%)	Other Comments
							OMC	FMC	FMC/ OMC	Depth In Subgrade (mm)	Equiv. CBR %	10 day (95% Rel. Comp.)	
BH13		0-200	ML	FILL/TOPSOIL: Sandy SILT; low plasticity, fine to coarse sand, grey	MC>PL	S							FILL: Appears poorly compacted 'Uncontrolled' FILL: Appears poorly compacted
N: 6225246		200-400	ML	FILL: Sandy SILT; low plasticity, fine to coarse sand, trace gravel, orange brown	MC>PL	F-St.							FILL: Appears poorly compacted 'Uncontrolled' FILL: Appears poorly compacted
E: 0585041		400-700	СН	FILL: CLAY; high plasticity, with fine to coarse sand, trace gravel, grey brown	MC>PL	St.							FILL: Appears poorly compacted 'Uncontrolled'
R/L: 39m	SG13	700-1200	СН	CLAY; high plasticity, with fine to medium sand, grey	MC>PL	StVSt.	21.3	15.9	0.75	700-1200	18	3	NATURAL
		1200-1500	CI-CH	Silty CLAY; medium to high plasticity, trace sand, yellow	MC>PL	VSt.				1200-1500	19		
				End of Borehole (BH13) @ 1.5m									
BH14		0-100	ML	FILL/TOPSOIL: Sandy SILT; low plasticity, fine to coarse sand, grey	MC <pl< td=""><td>F</td><td></td><td></td><td></td><td></td><td></td><td></td><td>FILL: Appears poorly compacted 'Uncontrolled' FILL: Appears poorly compacted</td></pl<>	F							FILL: Appears poorly compacted 'Uncontrolled' FILL: Appears poorly compacted
N: 6225207		100-500	ML	FILL: Sandy SILT; low plasticity, fine to coarse sand, trace gravel, grey	MC <pl< td=""><td>F</td><td></td><td></td><td></td><td></td><td></td><td></td><td>FILL: Appears poorly compacted 'Uncontrolled'</td></pl<>	F							FILL: Appears poorly compacted 'Uncontrolled'
E: 0585075	SG14	500-1300	СН	CLAY; high plasticity, with fine to medium sand, grey	MC>PL	F-St.	19.4	18.3	0.94	500-1300	8	3	NATURAL
R/L: 39m		1300-1500	CI-CH	Silty CLAY; medium to high plasticity, trace sand, yellow	MC <pl< td=""><td>VSt.</td><td></td><td></td><td></td><td>1300-1500</td><td>18</td><td></td><td></td></pl<>	VSt.				1300-1500	18		
				End of Borehole (BH14) @ 1.5m									
BH15		0-100	ML	FILL/TOPSOIL: Sandy SILT; low plasticity, fine to coarse sand, grey	MC <pl< td=""><td>St.</td><td></td><td></td><td></td><td></td><td></td><td></td><td>FILL: Appears moderately compacted 'Uncontrolled' FILL: Appears moderately compacted</td></pl<>	St.							FILL: Appears moderately compacted 'Uncontrolled' FILL: Appears moderately compacted
N: 6225232		100-300	CI	FILL: Sandy CLAY; medium plasticity, fine to coarse sand, orange brown	MC <pl< td=""><td>St.</td><td></td><td></td><td></td><td></td><td></td><td></td><td>FILL: Appears moderately compacted</td></pl<>	St.							FILL: Appears moderately compacted
E: 0585109	SG15	300-900	СН	CLAY; high plasticity, with fine to medium sand, grey	MC>PL	St.	21.4	14.8	0.69	300-900	8	3.5	NATURAL
R/L: 39m		900-1500	CI-CH	Silty CLAY; medium to high plasticity, trace sand, yellow	MC>PL	F-St.				900-1500	8		
				End of Borehole (BH15) @ 1.5m									

AITKEN ROWE TESTING LABORATORIES PTY LTD LOG SYMBOLS

LOG COLUMN	SYM	BOLS		DE	FINITION			
Groundwater		7	Standing water lev be shown.	vel. Time del	ay following co	mpletion of drilling may		
Record			Groundwater see drilling or excavat		oorehole or ex	cavation noted during		
	[)	Small disturbed ba lines.	ag sample ta	ken between th	ne depths indicated by		
Samples	l	3	Bulk disturbed sar	nple taken b	etween the dep	oths indicated by lines.		
	l	J	Undisturbed 50m depths indicated b		tube sample tak	ken between the		
		:17 , 10	Standard Penetra indicated by line	ation Test es. Individua	al figures sho	med between depths w blows per 150mm		
Field Tests	4, 7	, 10	penetration driver	-		tween depths indicated		
	-	7	by lines.		-	netration for 60 degree		
		3	solid cone driven					
Moisture	MC	>PL	Moisture content	estimated to	be greater that	in plastic limit.		
Condition	MC	=PL	Moisture content	estimated to	o be approx. eq	ual to plastic limit.		
(Clay or Silt based)	MC	<pl< th=""><th>Moisture content</th><th>estimated to</th><th>be less than p</th><th>lastic limit.</th></pl<>	Moisture content	estimated to	be less than p	lastic limit.		
Moisture	[)	DRY – runs freely	through fing	ers.			
Condition	Ν	Λ	MOIST – does not	run freely b	ut no free wate	r visible on soil surface.		
(Gravel or Sand based)	v	V	WET – free water	visible on so	il surface.			
	V	'S	VERY SOFT – unco	nfined comp	pressive strengt	h less than 25kPa.		
		S	SOFT – unconfined	d compressiv	e strength 25-5	50 kPa.		
Consistency		F	FIRM – unconfine	d compressiv	ve strength 50-1	100kPa.		
(Clay or Silt	S	t.	STIFF – unconfine	d compressiv	ve strength 100	-200kPa.		
based)	V	St.	VERY STIFF – unco	onfined comp	pressive strengt	h 200-400kPa.		
	H	4	HARD – unconfine	d compressi	ve strength gre	ater than 400kPa.		
			Description	-	lex Range % P.T.	'N' Value Range Blows/300mm		
Relative Density	V	′L	VERY LOOSE	<	15	0-5		
(Gravel or Sand based)		L	LOOSE		-35	6-10		
Juscuj		ID D	MEDIUM DENSE DENSE		-65	11-30		
		D	VERY DENSE		-85 85	31-60 >60		
Hand Penetrometer Readings	30 2!	D D D D D D D D D D D D D D D D D D D		individual	test results in	kPa on representative		
neauings		.%	Linear Shrinkage (As ner TfNIC	N Method T112	3)		
Laboratory Test		. %		ntent (As pe		andard AS1289.2.1.1 or		
		ss	Shrink-Swell Index (As per Australian Standard AS1289.7.1.1)					
		bit	Hardened steel 'V' shaped bit.					
Remarks		' bit 60	Tungsten Carbide wing bit. Penetration of auger string in mm under static load of rig rear ax					
			vithout rotation of au		mm under sta	tic load of rig rear axle		
Diamanata	F	ill			Piezometer			
Piezometer			Bentonite			Solid Pipe		
Construction			Washed Fine Grac	led Gravel		Slotted Screen		

APPENDIX C

DYNAMIC CONE PENETROMETER TEST REPORTS

CLIENT:											
	JR2&G - 3	SYDNEY, NSV	v					PAGE:	1 OF: 15	D	CP: 1 (BH1)
PROJECT:	GEOTECH	HNICAL INVE	STIGATION	& PAVEME	NT DESIGN			REGISTR	RATION NO:	S22-348	
	PROPOS	ED WENTWO	ORTH HEALT	H SERVICE	REDEVELOF	PMENT		DAT	E OF TEST:	9/08/2022	2
LOCATION	: No. 24 H	OSPITAL RO	AD, WENTW	ORTH, NSV	V		DEPTH	I BELOW FS	L (mm):	NIL	
SOIL DESC	CRIPTION:	REFER TO B	OREHOLE LOG	S & MATERIA	ALS SCHEDULE	& LOG	MOIS	TURE COND	DITION:	REFER TO	LOGS
		DEPTH OF GR	OUND WATE	R TABLE IF IN	ITERSECTED:	N/A	TES	T METHOD:	AS 1289.6	.3.2	
Depth(m)	Blows	Est. CBR	Depth(m)	Blows	Est. CBR	Depth(m)	Blows	Est. CBR	Depth(m)	Blows	Est. CBR
0.0 - 0.1	6	12	1.5 - 1.6	END	*	3.0 - 3.1	*	*	4.5 - 4.6	*	*
0.1 - 0.2	9	20	1.6 - 1.7	*	*	3.1 - 3.2	*	*	4.6 - 4.7	*	*
0.2 - 0.3	10	23	1.7 - 1.8	*	*	3.2 - 3.3	*	*	4.7 - 4.8	*	*
0.3 - 0.4	13	32	1.8 - 1.9	*	*	3.3 - 3.4	*	*	4.8 - 4.9	*	*
0.4 - 0.5	13	32	1.9 - 2.0	*	*	3.4 - 3.5	*	*	4.9 - 5.0	*	*
0.5 - 0.6	8	17	2.0 - 2.1	*	*	3.5 - 3.6	*	*	5.0 - 5.1	*	*
0.6 - 0.7	11	25	2.1 - 2.2	*	*	3.6 - 3.7	*	*	5.1 - 5.2	*	*
0.7 - 0.8	13	32	2.2 - 2.3	*	*	3.7 - 3.8	*	*	5.2 - 5.3	*	*
0.8 - 0.9	15	38	2.3 - 2.4	*	*	3.8 - 3.9	*	*	5.3 - 5.4	*	*
0.9 - 1.0	13	32	2.4 - 2.5	*	*	3.9 - 4.0	*	*	5.4 - 5.5	*	*
1.0 - 1.1	13	28	2.5 - 2.6	*	*	4.0 - 4.1	*	*	5.5 - 5.6	*	*
1.1 - 1.2	10	23	2.6 - 2.7	*	*	4.1 - 4.2	*	*	5.6 - 5.7	*	*
1.2 - 1.3	10	23	2.7 - 2.8	*	*	4.1 - 4.2	*	*	5.7 - 5.8	*	*
1.2 - 1.3	10	23	2.8 - 2.9	*	*	4.2 - 4.3	*	*	5.8 - 5.9	*	*
1.4 - 1.5	10	23	2.9 - 3.0	*	*	4.4 - 4.5	*	*	5.9 - 6.0	*	*
	0	20	40	60	80	1	00	120	140	160	180
	200										
	600			\searrow							
(mm) H	800				\searrow						
Dept											
1	000							$\overline{}$			
1	200								$\overline{}$		
1	400									$\overline{}$	
1	600										
					REMARKS:						
WORLD	RECOGNISED	ISO/IEC	ed for compli 17025 - Testii TATION NUN	ng.	A	PPROVED S	IGNATORY: DATE:		rbes-Taber /2022		

			DY		ONE PEN	IETROME	TER REP	ORT			
CLIENT:	JBS&G - S	YDNEY, NSV	V					PAGE:	2 OF: 15	D	CP: 2 (BH2)
PROJECT	: GEOTECH	NICAL INVE	STIGATION	& PAVEME	NT DESIGN			REGISTE	RATION NO:	S22-348	
	PROPOSE	D WENTWC	ORTH HEALT	H SERVICE	REDEVELOP	MENT		DAT	E OF TEST:	9/08/2022	2
	I: No. 24 HC						DEPTH	BELOW FS	L (mm):	NIL	
SOIL DES	CRIPTION:	REFER TO B	OREHOLE LOG	S & MATERIA	ALS SCHEDULE	& LOG	MOIST	URE COND	DITION:	REFER TO	LOGS
	C	EPTH OF GR	OUND WATE	R TABLE IF IN	NTERSECTED:	N/A	TEST	METHOD:	AS 1289.6	.3.2	
Depth(m)	Blows	Est. CBR	Depth(m)	Blows	Est. CBR	Depth(m)	Blows	Est. CBR	Depth(m)	Blows	Est. CBR
0.0 - 0.1	2	3	1.5 - 1.6	END	*	3.0 - 3.1	*	*	4.5 - 4.6	*	*
0.1 - 0.2	3	5	1.6 - 1.7	*	*	3.1 - 3.2	*	*	4.6 - 4.7	*	*
0.2 - 0.3	5	9	1.7 - 1.8	*	*	3.2 - 3.3	*	*	4.7 - 4.8	*	*
0.3 - 0.4	6	12	1.8 - 1.9	*	*	3.3 - 3.4	*	*	4.8 - 4.9	*	*
0.4 - 0.5	7	14	1.9 - 2.0	*	*	3.4 - 3.5	*	*	4.9 - 5.0	*	*
0.5 - 0.6	7	14	2.0 - 2.1	*	*	3.5 - 3.6	*	*	5.0 - 5.1	*	*
0.6 - 0.7	6	12	2.1 - 2.2	*	*	3.6 - 3.7	*	*	5.1 - 5.2	*	*
0.7 - 0.8	6	12	2.2 - 2.3	*	*	3.7 - 3.8	*	*	5.2 - 5.3	*	*
0.8 - 0.9	6	12	2.3 - 2.4	*	*	3.8 - 3.9	*	*	5.3 - 5.4	*	*
0.9 - 1.0	6	12	2.4 - 2.5	*	*	3.9 - 4.0	*	*	5.4 - 5.5	*	*
1.0 - 1.1	7	14	2.5 - 2.6	*	*	4.0 - 4.1	*	*	5.5 - 5.6	*	*
1.1 - 1.2	7	14	2.6 - 2.7	*	*	4.1 - 4.2	*	*	5.6 - 5.7	*	*
1.2 - 1.3	7	14	2.7 - 2.8	*	*	4.2 - 4.3	*	*	5.7 - 5.8	*	*
1.3 - 1.4	8	17	2.8 - 2.9	*	*	4.3 - 4.4	*	*	5.8 - 5.9	*	*
1.4 - 1.5	8	17	2.9 - 3.0	*	*	4.4 - 4.5	*	*	5.9 - 6.0	*	*
	0	10	20	30	40	nulative Blo	60	70	80	90	100
1	200 400 600 800 1000 1200 1400 1600										
		Accredit	ed for compli	ance with	REMARKS:						
		ISO/IEC :	17025 - Testir	ng.	A	PPROVED S	IGNATORY:	Peter For	bes-Taber		

ARTL Wagga: 4/2 Riedell Street, Wagga Wagga NSW 2650

			DY	VAMIC C	ONE PEN	IETROME	TER REP	ORT			
CLIENT:	JBS&G - SY	DNEY, NSW	1					PAGE:	3 OF: 15	D	CP: 3 (BH3)
PROJECT:	GEOTECHN	VICAL INVES	STIGATION	& PAVEME	NT DESIGN			REGISTR	ATION NO:	S22-348	
	PROPOSED	WENTWO	RTH HEALT	H SERVICE	REDEVELOF	PMENT		DAT	E OF TEST:	10/08/202	22
LOCATION:	No. 24 HO	SPITAL ROA	D, WENTW	ORTH, NSV	V		DEPTH	BELOW FS	L (mm):	NIL	
SOIL DESCI	RIPTION:	REFER TO BO	DREHOLE LOG	S & MATERIA	ALS SCHEDULI	E & LOG	MOIST	FURE COND	ITION:	REFER TO	LOGS
	D	EPTH OF GRO	OUND WATE	R TABLE IF IN	NTERSECTED:	N/A	TEST	METHOD:	AS 1289.6	.3.2	
Depth(m)	Blows	Est. CBR	Depth(m)	Blows	Est. CBR	Depth(m)	Blows	Est. CBR	Depth(m)	Blows	Est. CBR
0.0 - 0.1	1	1	1.5 - 1.6	END	*	3.0 - 3.1	*	*	4.5 - 4.6	*	*
0.1 - 0.2	1	1	1.6 - 1.7	*	*	3.1 - 3.2	*	*	4.6 - 4.7	*	*
0.2 - 0.3	1	1	1.7 - 1.8	*	*	3.2 - 3.3	*	*	4.7 - 4.8	*	*
0.3 - 0.4	3	5	1.8 - 1.9	*	*	3.3 - 3.4	*	*	4.8 - 4.9	*	*
0.4 - 0.5	2	3	1.9 - 2.0	*	*	3.4 - 3.5	*	*	4.9 - 5.0	*	*
0.5 - 0.6	2	3	2.0 - 2.1	*	*	3.5 - 3.6	*	*	5.0 - 5.1	*	*
0.6 - 0.7	1	1	2.1 - 2.2	*	*	3.6 - 3.7	*	*	5.1 - 5.2	*	*
0.7 - 0.8	2	3	2.2 - 2.3	*	*	3.7 - 3.8	*	*	5.2 - 5.3	*	*
0.8 - 0.9	3	5	2.3 - 2.4	*	*	3.8 - 3.9	*	*	5.3 - 5.4	*	*
0.9 - 1.0	3	5	2.4 - 2.5	*	*	3.9 - 4.0	*	*	5.4 - 5.5	*	*
1.0 - 1.1	4	7	2.5 - 2.6	*	*	4.0 - 4.1	*	*	5.5 - 5.6	*	*
1.1 - 1.2	6	12	2.6 - 2.7	*	*	4.1 - 4.2	*	*	5.6 - 5.7	*	*
1.1 - 1.2	6	12	2.7 - 2.8	*	*	4.1 - 4.2	*	*	5.7 - 5.8	*	*
1.2 - 1.3	6	12	2.7 - 2.8	*	*	4.2 - 4.3	*	*	5.8 - 5.9	*	*
1.4 - 1.5	6	12	2.9 - 3.0	*	*	4.4 - 4.5	*	*	5.9 - 6.0	*	*
	0	5	10	15	Cun 20	nulative Blo	30	35	40	45	50
6 (шш	00										
		ISO/IEC 1	d for compli 7025 - Testir FATION NUM	ng.	REMARKS:	PPROVED S	IGNATORY:	Peter For	bes-Taber		
	ECOGNISED DITATION						DATE:	9/09	/2022		

ARTL Wagga: 4/2 Riedell Street, Wagga Wagga NSW 2650

			DY	NAMIC C	ONE PER	IETROME	TER REP	ORT			
CLIENT:	JBS&G -	SYDNEY, NSV	V				ſ	PAGE:	4 OF: 15	D	CP: 4 (BH4)
PROJECT	: GEOTEC	HNICAL INVE	STIGATION	& PAVEME	NT DESIGN			REGISTR	ATION NO:	S22-348	
	PROPOS	ED WENTWO	ORTH HEALT	H SERVICE	REDEVELO	PMENT			E OF TEST:		22
LOCATION		OSPITAL RO					DEPTH	BELOW FS		NIL	
SOIL DES	CRIPTION:	REFER TO B	OREHOLE LOG	S & MATERIA	ALS SCHEDUL	e & log	MOIS	TURE COND	DITION:	REFER TO	LOGS
		DEPTH OF GR					TES	METHOD:	AS 1289.6	.3.2	
Depth(m)	Blows	Est. CBR	Depth(m)	Blows	Est. CBR	Depth(m)	Blows	Est. CBR	Depth(m)	Blows	Est. CBR
0.0 - 0.1		1	1.5 - 1.6	2	3	3.0 - 3.1	*	*	4.5 - 4.6	*	*
0.1 - 0.2		1	1.6 - 1.7	ENND	*	3.1 - 3.2	*	*	4.6 - 4.7	*	*
0.2 - 0.3	1	1	1.7 - 1.8	*	*	3.2 - 3.3	*	*	4.7 - 4.8	*	*
0.3 - 0.4	2	3	1.8 - 1.9	*	*	3.3 - 3.4	*	*	4.8 - 4.9	*	*
0.4 - 0.5	2	3	1.9 - 2.0	*	*	3.4 - 3.5	*	*	4.9 - 5.0	*	*
0.5 - 0.6	4	7	2.0 - 2.1	*	*	3.5 - 3.6	*	*	5.0 - 5.1	*	*
0.6 - 0.7	4	7	2.1 - 2.2	*	*	3.6 - 3.7	*	*	5.1 - 5.2	*	*
0.7 - 0.8	4	7	2.2 - 2.3	*	*	3.7 - 3.8	*	*	5.2 - 5.3	*	*
0.8 - 0.9	4	7	2.3 - 2.4	*	*	3.8 - 3.9	*	*	5.3 - 5.4	*	*
0.9 - 1.0	5	9	2.4 - 2.5	*	*	3.9 - 4.0	*	*	5.4 - 5.5	*	*
1.0 - 1.1	5	9	2.5 - 2.6	*	*	4.0 - 4.1	*	*	5.5 - 5.6	*	*
1.1 - 1.2	4	7	2.6 - 2.7	*	*	4.1 - 4.2	*	*	5.6 - 5.7	*	*
1.2 - 1.3	4	7	2.7 - 2.8	*	*	4.2 - 4.3	*	*	5.7 - 5.8	*	*
1.3 - 1.4		5	2.8 - 2.9	*	*	4.3 - 4.4	*	*	5.8 - 5.9	*	*
1.4 - 1.5		5	2.9 - 3.0	*	*	4.4 - 4.5	*	*	5.9 - 6.0	*	*
	0		10	20		30		40	50		60
ā	200 400 600 800 1000 1200 1400 1600										
	1800										
		Accredit	ed for compli	ance with	REMARKS:						
WORLD	RECOGNISED	ISO/IEC	17025 - Testii	ng.	A	PPROVED S	IGNATORY: DATE:		rbes-Taber /2022		

ARTL Wagga: 4/2 Riedell Street, Wagga Wagga NSW 2650

				DYI	VAMIC C	ONE PEN	IETROME	TER REP	ORT			
CLIENT:	JBS&G	- SY	DNEY, NSV	V					PAGE:	5 OF: 15	D	CP: 5 (BH5)
PROJECT	: GEOTE	CHN	ICAL INVE	STIGATION	& PAVEME	NT DESIGN			REGISTR	RATION NO:	S22-348	
	PROPO	DSED	WENTWO	ORTH HEALT	H SERVICE	REDEVELOF	PMENT		DAT	E OF TEST	10/08/202	22
LOCATIO	N: No. 24	HOS	SPITAL ROA	AD, WENTW	ORTH, NSV	V		DEPTH	BELOW FS	L (mm):	NIL	
	SCRIPTION			OREHOLE LOG			& LOG	MOIST	TURE COND	DITION:	REFER TO	LOGS
		DE	PTH OF GR	OUND WATE	R TABLE IF IN	ITERSECTED:	N/A	TEST	F METHOD:	AS 1289.6	.3.2	
Depth(m)	Blows		Est. CBR	Depth(m)	Blows	Est. CBR	Depth(m)	Blows	Est. CBR	Depth(m)	Blows	Est. CBR
0.0 - 0.1	. 5		9	1.5 - 1.6	END	*	3.0 - 3.1	*	*	4.5 - 4.6	*	*
0.1 - 0.2	4		7	1.6 - 1.7	*	*	3.1 - 3.2	*	*	4.6 - 4.7	*	*
0.2 - 0.3	5		9	1.7 - 1.8	*	*	3.2 - 3.3	*	*	4.7 - 4.8	*	*
0.3 - 0.4	5		9	1.8 - 1.9	*	*	3.3 - 3.4	*	*	4.8 - 4.9	*	*
0.4 - 0.5			9	1.9 - 2.0	*	*	3.4 - 3.5	*	*	4.9 - 5.0	*	*
0.5 - 0.6			20	2.0 - 2.1	*	*	3.5 - 3.6	*	*	5.0 - 5.1	*	*
0.6 - 0.7			20	2.1 - 2.2	*	*	3.6 - 3.7	*	*	5.1 - 5.2	*	*
0.7 - 0.8			12	2.2 - 2.3	*	*	3.7 - 3.8	*	*	5.2 - 5.3	*	*
0.8 - 0.9	-		14	2.3 - 2.4	*	*	3.8 - 3.9	*	*	5.3 - 5.4	*	*
0.9 - 1.0	-	_	14	2.3 2.4	*	*	3.9 - 4.0	*	*	5.4 - 5.5	*	*
1.0 - 1.1	-		17	2.5 - 2.6	*	*	4.0 - 4.1	*	*	5.5 - 5.6	*	*
1.1 - 1.2			17	2.6 - 2.7	*	*	4.1 - 4.2	*	*	5.6 - 5.7	*	*
1.1 - 1.2			20	2.0 - 2.7	*	*	4.1 - 4.2	*	*	5.7 - 5.8	*	*
1.2 - 1.3			20	2.7 - 2.8	*	*	4.2 - 4.3	*	*	5.8 - 5.9	*	*
1.3 - 1.4	1		23	2.8 - 2.9	*	*	4.3 - 4.4	*	*	5.9 - 6.0	*	*
	0			20	40	Cun	nulative Blo	ows	90	100		120
	0			20	40		60		80	100		120
	200											
	1600											
	\land			ed for compli		REMARKS:						
WORLD	RECOGNISE	D		17025 - Testii TATION NUN		A	PPROVED S	IGNATORY: DATE:		bes-Taber /2022		

				DY	NAMIC C	ONE PEN	IETROME	TER REP	PORT			
CLIENT:	JBS&G	i - SY	DNEY, NSV	V					PAGE:	6 OF: 15	D	СР: 6 (ВН6)
PROJECT	T: GEOTE	ECHN	NICAL INVE	STIGATION	& PAVEMEI	NT DESIGN			REGISTR	RATION NO:	S22-348	
	PROPO	OSED	WENTWO	RTH HEALT	H SERVICE	REDEVELOP	PMENT		DAT	E OF TEST:	10/08/202	22
LOCATIO	N: No. 24	HO:	SPITAL ROA	AD, WENTW	ORTH, NSV	V		DEPTH	HBELOW FS	L (mm):	NIL	
SOIL DES	SCRIPTIO	N:	REFER TO B	OREHOLE LOG	S & MATERIA	ALS SCHEDULE	& LOG	MOIS	TURE COND	DITION:	REFER TO	LOGS
		DI	EPTH OF GR	OUND WATE	R TABLE IF IN	ITERSECTED:	N/A	TES	T METHOD:	AS 1289.6	.3.2	
Depth(m)	Blows		Est. CBR	Depth(m)	Blows	Est. CBR	Depth(m)	Blows	Est. CBR	Depth(m)	Blows	Est. CBR
0.0 - 0.1	L 5		9	1.5 - 1.6	END	*	3.0 - 3.1	*	*	4.5 - 4.6	*	*
0.1 - 0.2	2 6		12	1.6 - 1.7	*	*	3.1 - 3.2	*	*	4.6 - 4.7	*	*
0.2 - 0.3	3 6		12	1.7 - 1.8	*	*	3.2 - 3.3	*	*	4.7 - 4.8	*	*
0.3 - 0.4	1 7		14	1.8 - 1.9	*	*	3.3 - 3.4	*	*	4.8 - 4.9	*	*
0.4 - 0.5			12	1.9 - 2.0	*	*	3.4 - 3.5	*	*	4.9 - 5.0	*	*
0.5 - 0.6			9	2.0 - 2.1	*	*	3.5 - 3.6	*	*	5.0 - 5.1	*	*
0.6 - 0.7			5	2.1 - 2.2	*	*	3.6 - 3.7	*	*	5.1 - 5.2	*	*
0.7 - 0.8			3	2.2 - 2.3	*	*	3.7 - 3.8	*	*	5.2 - 5.3	*	*
0.8 - 0.9			3	2.3 - 2.4	*	*	3.8 - 3.9	*	*	5.3 - 5.4	*	*
0.9 - 1.0			3	2.4 - 2.5	*	*	3.9 - 4.0	*	*	5.4 - 5.5	*	*
1.0 - 1.1			7	2.5 - 2.6	*	*	4.0 - 4.1	*	*	5.5 - 5.6	*	*
1.1 - 1.2			14	2.5 - 2.8	*	*	4.0 - 4.1	*	*	5.6 - 5.7	*	*
1.1 - 1.2			14	2.0 - 2.7	*	*	4.1 - 4.2	*	*	5.7 - 5.8	*	*
1.2 - 1.3				2.7 - 2.8	*	*	4.2 - 4.3	*	*	5.8 - 5.9	*	*
1.3 - 1.4	1		14 17	2.8 - 2.9	*	*	4.3 - 4.4	*	*	5.8 - 5.9	*	*
	0		10	20	30	Cun 40	nulative Blo	50	60	70	80	90
	200 400 600 800 1000 1200 1400											
N				ed for compli 17025 - Testir		REMARKS:				11		
			ACCREDI 4679	TATION NUM	1BER:	А	PPROVED S		: Peter For			
ACCH		. 4 10						DATE:	9/09	/2022		

ARTL Wagga: 4/2 Riedell Street, Wagga Wagga NSW 2650

			DYI		ONE PEN	IETROME	TER REP	ORT			
CLIENT:	JBS&G - S	YDNEY, NSV	V					PAGE:	7 OF: 15	D	CP: 7 (BH7)
PROJECT:	GEOTECH	INICAL INVE	STIGATION	& PAVEME	NT DESIGN			REGIST	RATION NO:	S22-348	
	PROPOSE	D WENTWO	RTH HEALT	H SERVICE	REDEVELOF	PMENT		DAT	E OF TEST:	9/08/2022	2
LOCATION	: No. 24 H	OSPITAL ROA	AD, WENTW	/ORTH, NSV	V		DEPTH	BELOW FS	L (mm):	NIL	
SOIL DESC	CRIPTION:	REFER TO B	OREHOLE LOG	SS & MATERIA	ALS SCHEDULI	e & log	MOIS	TURE CONE	DITION:	REFER TO	LOGS
		DEPTH OF GR	OUND WATE	R TABLE IF IN	NTERSECTED	: N/A	TES	T METHOD:	AS 1289.6	.3.2	
Depth(m)	Blows	Est. CBR	Depth(m)	Blows	Est. CBR	Depth(m)	Blows	Est. CBR	Depth(m)	Blows	Est. CBR
0.0 - 0.1	3	5	1.5 - 1.6	END	*	3.0 - 3.1	*	*	4.5 - 4.6	*	*
0.1 - 0.2	4	7	1.6 - 1.7	*	*	3.1 - 3.2	*	*	4.6 - 4.7	*	*
0.2 - 0.3	2	3	1.7 - 1.8	*	*	3.2 - 3.3	*	*	4.7 - 4.8	*	*
0.3 - 0.4	1	1	1.8 - 1.9	*	*	3.3 - 3.4	*	*	4.8 - 4.9	*	*
0.4 - 0.5	1	1	1.9 - 2.0	*	*	3.4 - 3.5	*	*	4.9 - 5.0	*	*
0.5 - 0.6	2	3	2.0 - 2.1	*	*	3.5 - 3.6	*	*	5.0 - 5.1	*	*
0.6 - 0.7	2	3	2.1 - 2.2	*	*	3.6 - 3.7	*	*	5.1 - 5.2	*	*
0.7 - 0.8	3	5	2.2 - 2.3	*	*	3.7 - 3.8	*	*	5.2 - 5.3	*	*
0.8 - 0.9	3	5	2.3 - 2.4	*	*	3.8 - 3.9	*	*	5.3 - 5.4	*	*
0.9 - 1.0	4	7	2.4 - 2.5	*	*	3.9 - 4.0	*	*	5.4 - 5.5	*	*
1.0 - 1.1	4	7	2.5 - 2.6	*	*	4.0 - 4.1	*	*	5.5 - 5.6	*	*
1.1 - 1.2	3	5	2.6 - 2.7	*	*	4.1 - 4.2	*	*	5.6 - 5.7	*	*
1.2 - 1.3	3	5	2.7 - 2.8	*	*	4.2 - 4.3	*	*	5.7 - 5.8	*	*
1.3 - 1.4	3	5	2.8 - 2.9	*	*	4.3 - 4.4	*	*	5.8 - 5.9	*	*
1.4 - 1.5	3	5	2.9 - 3.0	*	*	4.4 - 4.5	*	*	5.9 - 6.0	*	*
	0	5	10	15	20) 2	25	30	35	40	45
	200										
	400		\mathbf{i}								
	400										
	600			$\overline{}$							
<u> </u>	800				\searrow						
Dept 1	000										
1	200										
1	400									$\overline{}$	
1	600										
					REMARKS:						
WORLD	RECOGNISED	ISO/IEC 1	ed for compli L7025 - Testii TATION NUN	ng.	А	PPROVED S	IGNATORY: DATE:		rbes-Taber /2022		

ARTL Wagga: 4/2 Riedell Street, Wagga Wagga NSW 2650

				DYM		ONE PEN	ETROME	TER REP	ORT			
CLIENT:	JE	BS&G - SY	DNEY, NSW	/					PAGE:	8 OF: 15	D	CP: 8 (BH8)
PROJECT	Г: G	EOTECHN	VICAL INVES	STIGATION	& PAVEMEI	NT DESIGN			REGISTR	ATION NO:	S22-348	
	Р	ROPOSED	WENTWO	RTH HEALT	H SERVICE I	REDEVELOP	MENT		DAT	E OF TEST:	11/08/202	2
LOCATION	N: N	lo. 24 HO	SPITAL ROA	D, WENTW	ORTH, NSV	V		DEPTH	BELOW FS	L (mm):	NIL	
SOIL DES	SCRI					LS SCHEDULE			TURE COND		REFER TO	LOGS
		D	EPTH OF GRO	DUND WATE	R TABLE IF IN	ITERSECTED:	N/A	TEST	T METHOD:	AS 1289.6	.3.2	
Depth(m)	Bl	ows	Est. CBR	Depth(m)	Blows	Est. CBR	Depth(m)	Blows	Est. CBR	Depth(m)	Blows	Est. CBR
0.0 - 0.1		10	23	1.5 - 1.6	END	*	3.0 - 3.1	*	*	4.5 - 4.6	*	*
0.1 - 0.2	2	10	23	1.6 - 1.7	*	*	3.1 - 3.2	*	*	4.6 - 4.7	*	*
0.2 - 0.3	3	8	17	1.7 - 1.8	*	*	3.2 - 3.3	*	*	4.7 - 4.8	*	*
0.3 - 0.4	L .	7	14	1.8 - 1.9	*	*	3.3 - 3.4	*	*	4.8 - 4.9	*	*
0.4 - 0.5		4	7	1.9 - 2.0	*	*	3.4 - 3.5	*	*	4.9 - 5.0	*	*
0.5 - 0.6	;	4	7	2.0 - 2.1	*	*	3.5 - 3.6	*	*	5.0 - 5.1	*	*
0.6 - 0.7		3	5	2.1 - 2.2	*	*	3.6 - 3.7	*	*	5.1 - 5.2	*	*
0.7 - 0.8		3	5	2.2 - 2.3	*	*	3.7 - 3.8	*	*	5.2 - 5.3	*	*
0.8 - 0.9		3	5	2.3 - 2.4	*	*	3.8 - 3.9	*	*	5.3 - 5.4	*	*
0.9 - 1.0		3	5	2.4 - 2.5	*	*	3.9 - 4.0	*	*	5.4 - 5.5	*	*
1.0 - 1.1		4	7	2.5 - 2.6	*	*	4.0 - 4.1	*	*	5.5 - 5.6	*	*
1.1 - 1.2		4	7	2.6 - 2.7	*	*	4.1 - 4.2	*	*	5.6 - 5.7	*	*
1.2 - 1.3		5	9	2.7 - 2.8	*	*	4.2 - 4.3	*	*	5.7 - 5.8	*	*
1.3 - 1.4		5	9	2.8 - 2.9	*	*	4.3 - 4.4	*	*	5.8 - 5.9	*	*
1.4 - 1.5)	5	9	2.9 - 3.0	-	-	4.4 - 4.5			5.9 - 6.0		
	0	0	10	20	30	40	5	50	60	70	80	90
	200)			<u></u>							
	400	,										
							_					
(mm)	600						$\overline{\}$					
Depth (m	800)										
	1000)										
	1200								\searrow			
	1400										<u> </u>	
	1600											
						REMARKS:						
WORLD	D RECO		ISO/IEC 1	ed for compli 7025 - Testir TATION NUM	ng.	A	PPROVED S	IGNATORY:	Peter For	bes-Taber		
ACCR	EDI	TATION						DATE:		/2022		

REGISTECHNICAL INVESTIGATION & PAVEMENT DESIGN PROPOSED WENTWORTH HEALTH SERVICE REDEVELOPMENT LOCATION: No. 24 HOSPITAL ROAD, WENTWORTH, NSW REGISTRATION NO: 522-348 DATE OF TEST: 11/08/2022 DOUGLION: NO. 24 HOSPITAL ROAD, WENTWORTH, NSW DEPTH OF COUND WENTWORTH, NSW SOIL DESCRIPTION: REFER TO BOREHOLE LOGS & MATERIALS SCHEDULE & LOG MOISTURE CONDITION: REFER TO LOGS DEPTH OF GROUND WATER TABLE IF INTERSECTED: N/A TEST METHOD: AS 1289.6.3.2 Depth(m) Blows Est. CBR Depth(m) Blows DEST ME				DYI	VAMIC C	ONE PEN	IETROME	ETER REP	ORT			
PROPOSED WENTWORTH HEALTH SERVICE REDUCIOPMENT DATE OF TEST: 11/08/2022 DEPTHOR: DEPTHOR: DEPTHOR: NIL SOLDESCRIPTION: REFROM TO SOLDE SOLDE SOLDE TO SOLDE SOLDE SOLDE TO SOLDE SOLDE SOLDE TO SOLDE	CLIENT:	JBS&G - S	YDNEY, NSV	V					PAGE:	9 OF: 15	D	СР: 9 (ВН9)
DOCATION: No. 24 HOSPITAL ROAD, WEINTWORTH, NSW. SOIL DESCRIPTION: REFER TO LOGS DEPTH OF GROUND WATER TABLE IF INTERSECTED: N/A 0 - 0.1 1 1 1 16 - 1.7 0 - 0.1 0 - 0.1 1 1 1 16 - 1.7 0 - 0.1 1 1 1 16 - 1.7 0 - 0.1 0 - 0.1 1 1 1 16 - 1.7 0 - 0.1 0 - 0.1 1 1 1 16 - 1.7 0 - 0.1 1 1 1 16 - 1.7 0 - 0.1 0 - 0.1 1 1 1 16 - 1.7 0 - 0.1 0 - 0.1 0 - 0.1 0 - 0.1 1 1 1 16 - 1.7 0 - 0.1 0 - 0.1 1 1 1 16 - 1.7 0 - 0.1 0	PROJECT:				& PAVEME	NT DESIGN			REGISTR	ATION NO:		
DEPTH BELOW FSL (mm): NIL DEPTH BELOW FSL (mm): NIL SOIL DESCRIPTION: REFER TO LOSS DEPTH BELOW FSL (DIGS ANTERNAS SCHEDULS & DOI MOSTURE CONTON: REFER TO LOSS DEPTH BELOW FSL (DIGS ANTERNAS SCHEDULS & DOI MOSTURE CONTON: REFER TO LOSS DEPTH BELOW FSL (DIGS ANTERNAS SCHEDULS & DOI MOSTURE CONTON: REFER TO LOSS DEPTH BELOW FSL (DIGS ANTERNAS SCHEDULS & DOI MOSTURE CONTON: REFER TO LOSS DEPTH BELOW FSL (DIGS ANTERNAS SCHEDULS & DOI MOSTURE CONTON REFER TO LOSS DEPTH BELOW FSL (DIG ANTERNAS SCHEDULS & DOI MOSTURE CONTON REFER TO LOSS DEPTH BELOW FSL (DIG ANTERNAS SCHEDUCS ANTERNAS SCHEDUCS ANTERNAS SCHEDUCS ANTERNAS SCHEDUCS ANTERNASCHEDUCS DEPTH BELOW FSL (DIG ANTERNASCHEDUCS ANTERNASCHEDUCS DEPTH BELOW FSL (DIG ANTERNASCHEDUCS ANTERNASCHEDUCS ANTERNASCHEDUCS DEPTH BELOW FSL (DIG ANTERNASCHEDUCS ANTERNASCHEDUCS DEPTH BELOW FSL (DIG ANTERNASCHEDUCS DEPTH BELOW FSL (DIG ANTERNASCHEDUCS DEPTH BELOW FSL (DIG ANTERNASCHEDUCS) DEPTH BELOW FSL (DIG ANTERNASCHEDUCS) <td></td> <td>PROPOSE</td> <td>D WENTWO</td> <td>RTH HEALT</td> <td>H SERVICE</td> <td>REDEVELOP</td> <td>MENT</td> <td></td> <td>DAT</td> <td>E OF TEST:</td> <td>11/08/202</td> <td>22</td>		PROPOSE	D WENTWO	RTH HEALT	H SERVICE	REDEVELOP	MENT		DAT	E OF TEST:	11/08/202	22
SOIL DECRIPTION: BEEN TO BOSENGE LOGS & MATERIALS SCHEDUE & LOG DEPTH OF GROUND WATER TABLE IF INTERSECTED: N/A TEST METHOD: AS 1283.6.3.2 TEST METHOD: AS 1283.6.3.2	LOCATION	: No. 24 HC	SPITAL ROA	D, WENTW	ORTH, NSV	V		DEPTH				
DEPTH OF GROUND WATER TABLE (FINTRESCCTE): N/A TEST METHOD: AS 2280 - 6.32 Depth(m) Blows Ext. CBR							& LOG	1			REFER TO	LOGS
0.0-0.1 1 1 1.1-1.5 PND • 30-3.1 • • 46.427 • • 0.1-0.2 1 1 1.6-1.7 • 31-3.2 • • 46.427 • • 0.3-0.4 2 3 1.8-1.7 • • 31-3.2 • • 46.447 • • 0.3-0.4 2 3 1.8-1.9 • • 31-3.2 • • 48.43 • • 0.3-0.4 2 3 1.8-1.9 • • 33-3.4 • • 48.43 • • • 1.5 • • 49.5.0 • • • 1.5 • • 1.5 • • 1.5 • • 1.5 • • 1.5 • • 1.5 • • 1.5 • • 1.5 • • 1.5 • • 1.5 • • 1.5 • • 1.5 • • 1.5 • •								1				
0.0-0.1 1 1 1.1-1.5 PND • 30-3.1 • • 4.5-4.6 • • 0.1-0.2 1 1 1.6-1.7 • 31-3.2 • • 4.6-4.47 • • 0.2-0.3 1 1 1.7-1.8 • • 31-3.2 • • 4.6-4.47 • • 0.3-0.4 2 3 1.8-1.9 • • 3.3-3.4 • • 4.8-4.7 • • 0.3-0.4 2 3 1.8-1.9 • • 3.3-3.4 • • 4.8-4.8 • • 0.3-0.6 3 5 2.2-2.3 • • 3.5-3.6 • • 5.3-5.4 • • 5.3-5.4 • • 5.5-5.7 • • 1.1-1.2 6 12 2.2-2.3 • • 4.2-4.3 • • 5.5-5.7 • • 1.2-1.3 6 12 2.2-2.3 • • 4.2-4.3 • • 5.5-5.7 • •	Depth(m)				-			Blows	Est. CBR	Depth(m)	Blows	Est. CBR
1 1 1 1-1-7 * * 3.1.32 * * 46.47 * * 02-03 1 1 1.7.18 * * 32.33 * * 47.48 * * 03-0.4 2 3 1.8.19 * * 33.34 * * 47.48 * * 04-0.5 3 5 1.9.70 * * 34.35 * * 45.61 * * 50.61 * * 45.35 * * 50.71 * * 34.35 * * 50.71 * * 51.52 * * * 45.35 * * 51.52 * * 40.41 * * 53.53 * * * 53.53 * * * 53.53 * * * 53.53 * * * 53.54 * * * * 53.54 * * * * 53.54 * * * * *			1								1	1
1 1 1 17-18 * * 42-33 * * 47-48 * * 03-04 2 3 18-19 * * 32-34 * * 47-48 * * 03-04 2 3 18-19 * * 32-34 * * 48-49 * * * 0 05-06 3 5 20-21 * * 35-36 * * 50-51 * * 05-06 3 5 21-22 * * 36-37 * * 51-52 * * 51-52 * * 52-53 * * 53-56 * * * 55-56 * * * 55-56 * * * 55-56 * * * 14-12 * * 55-56 * * * * 55-56 * * * * 55-56 * * * 14-12 * * 55-56 * *			1			*		*	*		*	*
33-0.4 2 3 1.8-1.9 * 3.3-3.4 * * 4.8-4.9 * * 0.5-0.6 3 5 1.9-2.0 * * 3.5-3.6 * 4.8-4.9 * * 0.5-0.6 3 5 2.0-2.1 * * 3.5-3.6 * 4.8-4.9 * * * 0.5-0.6 3 5 2.0-2.1 * * 3.5-3.6 * * 5.0-5.1 * * 0.6-0.7 3 5 2.2-2.3 * * 3.5-3.6 * * 5.2-5.3 * * 0.8-0.0 5 9 2.2-2.3 * * 3.8-4.0 * 5.3-5.4 * * 0.5-1.6 6 12 2.5-2.6 * 4.0-4.1 * * 5.5-5.7 * * * 1.3-1.4 6 12 2.6-2.7 * 4.3-4.4 * * 5.8-5.9 * * * 1.3-1.4 6 12 2.8-2.9 * 4.4-4.5 *		1	1		*	*		*	*	1	*	*
0.4-0.5 3 5 1.9-2.0 • 4 3.4-3.5 • • 4.9-5.0 • • 0.5-0.6 3 5 2.0-2.1 • • 3.5-3.6 • • 0.5-0.1 • • 0.6-0.7 3 5 2.2-2.3 • • 3.5-3.6 • • 5.0-5.1 • • 0.7-0.8 3 5 2.2-2.3 • • 3.5-3.6 • • 5.2-5.3 • • 0.8-09 5 9 2.3-2.6 • • 4.0-4.1 • • 5.5-5.6 • • 1.0-1.1 6 12 2.5-2.6 • • 4.0-4.1 • • 5.5-5.6 • • • 4.3-4.4 • • 5.5-5.6 • • • 1.4-1.5 • 5.5.5.6 • • • • 5.5.5.6 • • • • 5.9.5.6 • • • • • • 5.9.5.6 • •					*	*		*	*	4.8 - 4.9	*	*
05:06 3 5 20:21 • • 35:36 • • • 50:51 • • 06:07 3 5 21:22 • • 36:37 • • 50:51 • • 07:08 3 5 21:22 • • 36:37 • • 51:32 • • 08:09 5 9 23:24 • • 38:39 • • 53:54 • • 10:11 6 12 26:27 • • 40:41 • • 55:56 • • 12:13 6 12 27:728 • • 42:43 • • 58:59 • • • 13:14 6 12 28:29 • • 42:43 • • 58:56 • • • 14:15 7 14 29:30 • • 43:44 • • 58:56 • • 14:15 7 14		-			*	*		*	*		*	*
06-0.7 3 5 21-2.2 • • 36-3.7 • • 51-5.2 • • 0.7-0.8 3 5 22-2.3 • • 3.7-3.8 • • 52-3.3 • • 0.8-0.9 5 9 23-2.4 • • 3.3-3.9 • • 5.3-5.4 • • 0.9-10 6 12 2.4-2.5 • • 3.3-4.0 • • 5.5.5 • • 1.1-12 6 12 2.6-2.7 • • 4.1-4.2 • • 5.6-5.7 • • • 1.3-1.4 • • 5.8-5.3 • • • 1.3-1.4 • • 5.8-5.3 • • • 1.3-1.4 • • 5.8-5.3 • • • 1.3-1.4 • • 5.8-5.3 • • • 1.4-1.5 • 5.8-5.3 • • • 1.4-1.5 • 5.8-5.3 • • • 1.4-1.5 • <td< td=""><td></td><td></td><td></td><td></td><td>*</td><td>*</td><td>1</td><td>*</td><td>*</td><td></td><td>*</td><td>*</td></td<>					*	*	1	*	*		*	*
0.7-0.8 3 5 2.2-2.3 • • 3.7-3.8 • • 5.2-5.3 • • 0.8-09 5 9 2.3-2.4 • • 3.8-39 • • 5.3-5.4 • • 0.9-10 6 12 2.4-2.5 • • 3.8-39 • • 5.3-5.6 • • 10-11 6 12 2.6-2.7 • • 4.0-4.1 • 5.5-5.6 • • 11-12 6 12 2.6-2.7 • • 4.2-4.3 • • 5.5-5.8 • • 13-1.4 6 12 2.8-2.8 • • 4.3-4.4 • • 5.8-5.3 • • 1.4-15 7 14 2.9-3.0 • • 4.4-4.5 • • 5.9-6.0 • • 1.4-15 7 14 2.9-3.0 • • 4.4-4.5 • • 5.9-6.0 • • 1.00 10 20 30 <td></td> <td></td> <td>1</td> <td></td> <td>*</td> <td>*</td> <td></td> <td>*</td> <td>*</td> <td></td> <td>*</td> <td>*</td>			1		*	*		*	*		*	*
0.8:09 5 9 2.3:2.4 * * 38:39 * * 53:5.4 * * 0.9:10 6 12 2.4:2.5 * * 39:4.0 * * 53:5.5 * * * 10:11 6 12 2.5:2.6 * * 40:4.1 * * 55:5.5 * * * 11:12 6 12 2.6:2.7 * * 41:4.2 * * 55:5.5 * * * 13:14 6 12 2.8:2.3 * * 43:44 * * 55:5.5 * * * 1.4:15 7 14 29:3.0 * * 44:4.5 * * 59:6.0 * * * 59:6.0 * * * 59:6.0 * * * 59:6.0 * * * 59:6.0 * * * * * 59:6.0 * * * * * 59:6.0 * * <			1		*	*		*	*		*	*
09-10 6 12 24-25 • • 39-40 • • 55-55 • • • 10-11 6 12 25-26 • • 40-41 • • 55-56 • • • 41-42 • • 55-57 • • • 41-42 • • 55-57 • • • 41-42 • • 55-57 • • • 41-42 • • 55-57 • • • 41-15 • • 53-60 • • • 43-44 • • • 53-60 •					*	*	1	*	*		*	*
10-11 6 12 25-26 * 4.0-4.1 * * 55-56 * * 11-12 6 12 26-27 * 4.1-42 * * 55-56 * * * 13-14 6 12 27-28 * * 43-44 * * 55-57 * * * 13-14 6 12 28-29 * * 43-44 * * 58-59 *			1		*	*		*	*		*	*
1.1-12 6 12 2.6-2.7 * * 4.1-4.2 * * 5.6-5.7 * * 1.1-12 6 12 2.7-2.8 * * 4.2-4.3 * * 5.7-5.8 * * 1.3-1.4 6 12 2.7-2.8 * * 4.2-4.3 * * 5.7-5.8 * * 1.4-15 7 14 2.9-3.0 * * 4.4-4.5 * * 5.9-6.0 * * 1.4-15 7 14 2.9-3.0 * * 4.4-4.5 * * 5.9-6.0 * * 1.4-15 7 14 2.9-3.0 * * 4.4-4.5 * * 5.9-6.0 * * Cumulative Blows Cumulative Blows 1.00 10 20 30 40 50 60 7 1.00 100 100 100 100 100 100 100 100 100 100 100 100			1		*	*	1	*	*		*	*
L1 G L2 L2 <thl2< th=""> <thl2< th=""> L2 <thl2<< td=""><td></td><td></td><td></td><td>T</td><td>*</td><td>*</td><td></td><td>*</td><td>*</td><td></td><td>*</td><td>*</td></thl2<<></thl2<></thl2<>				T	*	*		*	*		*	*
1.3 - 14 6 12 2.8 - 2.9 · · 4.3 - 4.4 · · 5.8 - 5.9 · · · 1.4 - 1.5 7 14 2.9 - 3.0 · · 4.3 - 4.4 · · 5.8 - 5.9 · · · · 5.9 - 6.0 ·<					*	*		*	*		*	*
14-15 7 14 2.9-3.0 * * 4.4-4.5 * * 5.9-6.0 * * Cumulative Blows Cumulative Blows 0 10 20 30 40 50 60 70 40 60 60 70 60 70 60 70 40 60 60 60 70 60 70 60 70 40 60 60 70 60 70 60 70 70 600 60 60 70 60 7		1			*	*		*	*		*	*
Cumulative Blows Cumulative Blows Cumulative Blows Cumulative Blows Cumulative Blows Cumulative Blows Accredited for compliance with ISO/IEC 17025 - Testing. Accredited for complianc					*	*		*	*		*	*
Image: Construction of the second			10		20	30		40	50		60	70
Accredited for compliance with ISO/IEC 17025 - Testing. ACCREDITATION NUMBER: 4679 APPROVED SIGNATORY: Peter Forbes-Taber	т Depth (mm) 1 1	600										
4679 APPROVED SIGNATORY: Peter Forbes-Taber	1											1
			ISO/IEC 1	7025 - Testir	ng.	REMARKS:			-11	4		

			DYI		ONE PEN	IETROME	TER REP	ORT			
CLIENT:	JBS&G - S	YDNEY, NSV	V					PAGE: 1	0 OF: 15	DCP	: 10 (BH10)
PROJECT:	GEOTECH	NICAL INVE	STIGATION	& PAVEME	NT DESIGN			REGISTR	ATION NO:	S22-348	
	PROPOSEI	D WENTWO	RTH HEALT	H SERVICE	REDEVELOP	PMENT		DAT	E OF TEST:	11/08/202	22
LOCATION	: No. 24 HC	SPITAL ROA	D, WENTW	ORTH, NSV	V		DEPTH	BELOW FS	L (mm):	NIL	
SOIL DESC	CRIPTION:	REFER TO BO	OREHOLE LOG	S & MATERIA	ALS SCHEDULE	& LOG	MOIS	TURE COND	ITION:	REFER TO	LOGS
	D	EPTH OF GR	OUND WATE	R TABLE IF IN	ITERSECTED:	N/A	TES	T METHOD:	AS 1289.6	.3.2	
Depth(m)	Blows	Est. CBR	Depth(m)	Blows	Est. CBR	Depth(m)	Blows	Est. CBR	Depth(m)	Blows	Est. CBR
0.0 - 0.1	2	3	1.5 - 1.6	END	*	3.0 - 3.1	*	*	4.5 - 4.6	*	*
0.1 - 0.2	6	12	1.6 - 1.7	*	*	3.1 - 3.2	*	*	4.6 - 4.7	*	*
0.2 - 0.3	8	17	1.7 - 1.8	*	*	3.2 - 3.3	*	*	4.7 - 4.8	*	*
0.3 - 0.4	8	17	1.8 - 1.9	*	*	3.3 - 3.4	*	*	4.8 - 4.9	*	*
0.4 - 0.5	8	17	1.9 - 2.0	*	*	3.4 - 3.5	*	*	4.9 - 5.0	*	*
0.5 - 0.6	9	20	2.0 - 2.1	*	*	3.5 - 3.6	*	*	5.0 - 5.1	*	*
0.6 - 0.7	10	23	2.1 - 2.2	*	*	3.6 - 3.7	*	*	5.1 - 5.2	*	*
0.7 - 0.8	9	20	2.2 - 2.3	*	*	3.7 - 3.8	*	*	5.2 - 5.3	*	*
0.8 - 0.9	10	23	2.3 - 2.4	*	*	3.8 - 3.9	*	*	5.3 - 5.4	*	*
0.9 - 1.0	10	23	2.4 - 2.5	*	*	3.9 - 4.0	*	*	5.4 - 5.5	*	*
1.0 - 1.1	9	20	2.5 - 2.6	*	*	4.0 - 4.1	*	*	5.5 - 5.6	*	*
1.1 - 1.2	9	20	2.6 - 2.7	*	*	4.1 - 4.2	*	*	5.6 - 5.7	*	*
1.2 - 1.3	10	23	2.7 - 2.8	*	*	4.2 - 4.3	*	*	5.7 - 5.8	*	*
1.3 - 1.4	9	20	2.8 - 2.9	*	*	4.3 - 4.4	*	*	5.8 - 5.9	*	*
1.4 - 1.5	10	23	2.9 - 3.0	*	*	4.4 - 4.5	*	*	5.9 - 6.0	*	*
	0	20		40	60		80	100		120	140
Depth (mm)	200										
	400										
1	600										
		Accuration			REMARKS:						
WORLD F	RECOGNISED	ISO/IEC 1	ed for compli .7025 - Testir TATION NUN	ng.	A	PPROVED S	IGNATORY: DATE:		bes-Taber /2022		

ARTL Wagga: 4/2 Riedell Street, Wagga Wagga NSW 2650

				DYN		ONE PEN	ETROME	TER REP	ORT			
CLIENT:	JB	S&G - SY	DNEY, NSV	V					PAGE: 1	1 OF: 15	DCP:	: 11 (BH11)
PROJECT				STIGATION	& PAVEME	NT DESIGN			REGISTR	ATION NO:	S22-348	
	PF	ROPOSED) WENTWO	RTH HEALT	H SERVICE I	REDEVELOP	MENT		DAT	E OF TEST:	11/08/202	2
LOCATION	1: N	o. 24 HO	SPITAL ROA	D, WENTW	ORTH, NSV	V		DEPTH	BELOW FS	L (mm):	NIL	
SOIL DES	CRIP	TION:	REFER TO BO	OREHOLE LOG	S & MATERIA	LS SCHEDULE	& LOG	MOIST	FURE COND	ITION:	REFER TO	LOGS
		D	EPTH OF GRO	OUND WATE	R TABLE IF IN	ITERSECTED:	N/A	TEST	METHOD:	AS 1289.6	.3.2	
Depth(m)	Blo	ows	Est. CBR	Depth(m)	Blows	Est. CBR	Depth(m)	Blows	Est. CBR	Depth(m)	Blows	Est. CBR
0.0 - 0.1		3	5	1.5 - 1.6	END	*	3.0 - 3.1	*	*	4.5 - 4.6	*	*
0.1 - 0.2		4	7	1.6 - 1.7	*	*	3.1 - 3.2	*	*	4.6 - 4.7	*	*
0.2 - 0.3		5	9	1.7 - 1.8	*	*	3.2 - 3.3	*	*	4.7 - 4.8	*	*
0.3 - 0.4		4	7	1.8 - 1.9	*	*	3.3 - 3.4	*	*	4.8 - 4.9	*	*
0.4 - 0.5		2	3	1.9 - 2.0	*	*	3.4 - 3.5	*	*	4.9 - 5.0	*	*
0.5 - 0.6	_	2	3	2.0 - 2.1	*	*	3.5 - 3.6	*	*	5.0 - 5.1	*	*
0.6 - 0.7		3	5	2.1 - 2.2	*	*	3.6 - 3.7	*	*	5.1 - 5.2	*	*
0.7 - 0.8	_	2	3	2.2 - 2.3	*	*	3.7 - 3.8	*	*	5.2 - 5.3	*	*
0.8 - 0.9		2	3	2.3 - 2.4	*	*	3.8 - 3.9	*	*	5.3 - 5.4	*	*
0.9 - 1.0	_	2	3	2.4 - 2.5	*	*	3.9 - 4.0	*	*	5.4 - 5.5	*	*
1.0 - 1.1	-	3	5	2.5 - 2.6	*	*	4.0 - 4.1	*	*	5.5 - 5.6	*	*
1.1 - 1.2	_	2	3	2.6 - 2.7	*	*	4.1 - 4.2	*	*	5.6 - 5.7	*	*
1.1 - 1.2		3	5	2.7 - 2.8	*	*	4.1 - 4.2	*	*	5.7 - 5.8	*	*
1.2 - 1.3		2	3	2.8 - 2.9	*	*	4.2 - 4.3	*	*	5.8 - 5.9	*	*
1.4 - 1.5		3	5	2.9 - 3.0	*	*	4.4 - 4.5	*	*	5.9 - 6.0	*	*
		0	5	10	15	Cum 20	ulative Blo	ws 5	30	35	40	45
	200 400		<u> </u>									
h (mm)	600						$\overline{}$					
Dept	800							$\overline{}$				
	1000								$\overline{}$			
	1200									$\overline{}$		
-	1400										$\overline{}$	
	1600											
						REMARKS:						
WORLD	RECC	DGNISED	ISO/IEC 1	ed for compli .7025 - Testir TATION NUM	ng.	A	PPROVED S	IGNATORY: DATE:		bes-Taber /2022		

			DYM	NAMIC C	ONE PEN	ETROME	TER REP	ORT			
CLIENT:	JBS&G - S	DNEY, NSV	V					PAGE: 1	2 OF: 15	DCP	: 12 (BH12)
PROJECT:	GEOTECHI	NICAL INVE	STIGATION	& PAVEMEI	NT DESIGN			REGISTR	ATION NO:	S22-348	
	PROPOSE	O WENTWO	RTH HEALT	H SERVICE	REDEVELOP	MENT		DAT	E OF TEST:	11/08/202	2
LOCATION:	No. 24 HO	SPITAL ROA	D, WENTW	ORTH, NSV	V		DEPTH	BELOW FS	L (mm):	NIL	
SOIL DESC	RIPTION:	REFER TO BO	OREHOLE LOG	S & MATERIA	LS SCHEDULE	& LOG	MOIST	FURE COND	ITION:	REFER TO	LOGS
	D	EPTH OF GRO	OUND WATE	R TABLE IF IN	ITERSECTED:	N/A			AS 1289.6	.3.2	
Depth(m)	Blows	Est. CBR	Depth(m)	Blows	Est. CBR	Depth(m)	Blows	Est. CBR	Depth(m)	Blows	Est. CBR
0.0 - 0.1	1	1	1.5 - 1.6	END	*	3.0 - 3.1	*	*	4.5 - 4.6	*	*
0.1 - 0.2	1	1	1.6 - 1.7	*	*	3.1 - 3.2	*	*	4.6 - 4.7	*	*
0.2 - 0.3	4	7	1.7 - 1.8	*	*	3.2 - 3.3	*	*	4.7 - 4.8	*	*
0.3 - 0.4	5	9	1.8 - 1.9	*	*	3.3 - 3.4	*	*	4.8 - 4.9	*	*
0.4 - 0.5	5	9	1.9 - 2.0	*	*	3.4 - 3.5	*	*	4.9 - 5.0	*	*
0.5 - 0.6	6	12	2.0 - 2.1	*	*	3.5 - 3.6	*	*	5.0 - 5.1	*	*
0.6 - 0.7	10	23	2.1 - 2.2	*	*	3.6 - 3.7	*	*	5.1 - 5.2	*	*
0.7 - 0.8	8	17	2.2 - 2.3	*	*	3.7 - 3.8	*	*	5.2 - 5.3	*	*
0.8 - 0.9	8	17	2.3 - 2.4	*	*	3.8 - 3.9	*	*	5.3 - 5.4	*	*
0.9 - 1.0	7	14	2.4 - 2.5	*	*	3.9 - 4.0	*	*	5.4 - 5.5	*	*
1.0 - 1.1	9	20	2.5 - 2.6	*	*	4.0 - 4.1	*	*	5.5 - 5.6	*	*
1.0 - 1.1	8	17	2.6 - 2.7	*	*	4.1 - 4.2	*	*	5.6 - 5.7	*	*
1.2 - 1.3	9	20	2.7 - 2.8	*	*	4.1 - 4.2	*	*	5.7 - 5.8	*	*
1.2 - 1.3	9 7	14	2.7 - 2.8	*	*	4.2 - 4.3	*	*	5.8 - 5.9	*	*
1.4 - 1.5	7	14	2.9 - 3.0	*	*	4.4 - 4.5	*	*	5.9 - 6.0	*	*
	0	10	20	30	Cum 40	ulative Blo	6 0	70	80	90	100
4 (ш ш											
	.00										
16	.00										~
	<u> </u>	A			REMARKS:						
WORLD R	ECOGNISED DITATION	ISO/IEC 1	ed for compli .7025 - Testir TATION NUM	ng.	A	PPROVED S	IGNATORY: DATE:		bes-Taber /2022		

			DYM	NAMIC C	ONE PEN	ETROME	TER REP	ORT			
CLIENT:	JBS&G - SY	DNEY, NSV	V					PAGE: 1	3 OF: 15	DCP	: 13 (BH13)
PROJECT:	GEOTECH	VICAL INVES	STIGATION	& PAVEME	NT DESIGN			REGISTR	ATION NO:	S22-348	
	PROPOSED) WENTWO	RTH HEALT	H SERVICE	REDEVELOP	MENT		DAT	E OF TEST:	11/08/202	2
LOCATION:	No. 24 HO	SPITAL ROA	AD, WENTW	ORTH, NSV	V		DEPTH	BELOW FS	L (mm):	NIL	
SOIL DESC	RIPTION:	REFER TO BO	OREHOLE LOG	S & MATERIA	LS SCHEDULE	& LOG		TURE COND		REFER TO	LOGS
	D	EPTH OF GRO		-	ITERSECTED:	-	TEST	METHOD:	AS 1289.6	.3.2	-
Depth(m)	Blows	Est. CBR	Depth(m)	Blows	Est. CBR	Depth(m)	Blows	Est. CBR	Depth(m)	Blows	Est. CBR
0.0 - 0.1	1	1	1.5 - 1.6	END	*	3.0 - 3.1	*	*	4.5 - 4.6	*	*
0.1 - 0.2	1	1	1.6 - 1.7	*	*	3.1 - 3.2	*	*	4.6 - 4.7	*	*
0.2 - 0.3	2	3	1.7 - 1.8	*	*	3.2 - 3.3	*	*	4.7 - 4.8	*	*
0.3 - 0.4	4	7	1.8 - 1.9	*	*	3.3 - 3.4	*	*	4.8 - 4.9	*	*
0.4 - 0.5	4	7	1.9 - 2.0	*	*	3.4 - 3.5	*	*	4.9 - 5.0	*	*
0.5 - 0.6	4	7	2.0 - 2.1	*	*	3.5 - 3.6	*	*	5.0 - 5.1	*	*
0.6 - 0.7	5	9	2.1 - 2.2	*	*	3.6 - 3.7	*	*	5.1 - 5.2	*	*
0.7 - 0.8	7	14	2.2 - 2.3	*	*	3.7 - 3.8	*	*	5.2 - 5.3	*	*
0.8 - 0.9	8	17	2.3 - 2.4	*	*	3.8 - 3.9	*	*	5.3 - 5.4	*	*
0.9 - 1.0	9	20	2.4 - 2.5	*	*	3.9 - 4.0	*	*	5.4 - 5.5	*	*
1.0 - 1.1	10	23	2.5 - 2.6	*	*	4.0 - 4.1	*	*	5.5 - 5.6	*	*
1.1 - 1.2	9	20	2.6 - 2.7	*	*	4.1 - 4.2	*	*	5.6 - 5.7	*	*
1.2 - 1.3	9	20	2.7 - 2.8	*	*	4.2 - 4.3	*	*	5.7 - 5.8	*	*
1.3 - 1.4	8	17	2.8 - 2.9	*	*	4.3 - 4.4	*	*	5.8 - 5.9	*	*
1.4 - 1.5	9	20	2.9 - 3.0	*	*	4.4 - 4.5	*	*	5.9 - 6.0	*	*
	0	10	20	30	Cum 40	ulative Blo	60	70	80	90	100
4 9 9 10 12 14											
			ed for compli 7025 - Testir		REMARKS:						
WORLD R	ECOGNISED DITATION		TATION NUM		A	PPROVED S	IGNATORY: DATE:		bes-Taber /2022		

			DYM	NAMIC C	ONE PEN	IETROME	TER REP	ORT			
CLIENT:	JBS&G - S\	DNEY, NSV	V					PAGE: 1	4 OF: 15	DCP	: 14 (BH14)
PROJECT:	GEOTECHI	VICAL INVES	STIGATION	& PAVEME	NT DESIGN			REGISTR	ATION NO:	S22-348	
	PROPOSE	O WENTWO	RTH HEALT	H SERVICE	REDEVELOP	PMENT		DAT	E OF TEST:	11/08/202	22
LOCATION:	No. 24 HO	SPITAL ROA	D, WENTW	ORTH, NSV	V		DEPTH	BELOW FS	L (mm):	NIL	
SOIL DESC	RIPTION:	REFER TO BO	OREHOLE LOG	S & MATERIA	ALS SCHEDULE	& LOG	MOIS	TURE COND	ITION:	REFER TO	LOGS
	D	EPTH OF GRO	OUND WATE	R TABLE IF IN	ITERSECTED:	N/A	TES	T METHOD:	AS 1289.6	.3.2	
Depth(m)	Blows	Est. CBR	Depth(m)	Blows	Est. CBR	Depth(m)	Blows	Est. CBR	Depth(m)	Blows	Est. CBR
0.0 - 0.1	3	5	1.5 - 1.6	END	*	3.0 - 3.1	*	*	4.5 - 4.6	*	*
0.1 - 0.2	6	12	1.6 - 1.7	*	*	3.1 - 3.2	*	*	4.6 - 4.7	*	*
0.2 - 0.3	3	5	1.7 - 1.8	*	*	3.2 - 3.3	*	*	4.7 - 4.8	*	*
0.3 - 0.4	2	3	1.8 - 1.9	*	*	3.3 - 3.4	*	*	4.8 - 4.9	*	*
0.4 - 0.5	2	3	1.9 - 2.0	*	*	3.4 - 3.5	*	*	4.9 - 5.0	*	*
0.5 - 0.6	2	3	2.0 - 2.1	*	*	3.5 - 3.6	*	*	5.0 - 5.1	*	*
0.6 - 0.7	3	5	2.1 - 2.2	*	*	3.6 - 3.7	*	*	5.1 - 5.2	*	*
0.7 - 0.8	4	7	2.2 - 2.3	*	*	3.7 - 3.8	*	*	5.2 - 5.3	*	*
0.8 - 0.9	5	9	2.3 - 2.4	*	*	3.8 - 3.9	*	*	5.3 - 5.4	*	*
0.9 - 1.0	7	14	2.4 - 2.5	*	*	3.9 - 4.0	*	*	5.4 - 5.5	*	*
1.0 - 1.1	6	14	2.5 - 2.6	*	*	4.0 - 4.1	*	*	5.5 - 5.6	*	*
1.1 - 1.2	5	9	2.6 - 2.7	*	*	4.1 - 4.2	*	*	5.6 - 5.7	*	*
1.2 - 1.3	6	12	2.7 - 2.8	*	*	4.1 - 4.2	*	*	5.7 - 5.8	*	*
1.2 - 1.3	9	20	2.8 - 2.9	*	*	4.2 - 4.3	*	*	5.8 - 5.9	*	*
1.4 - 1.5	8	17	2.9 - 3.0	*	*	4.4 - 4.5	*	*	5.9 - 6.0	*	*
	0	10	20	1	Curr 30	ulative Blo	5 0	6	0	70	80
ر Depth (mm) 11 14	200										
			ed for compli		REMARKS:						
WORLD F	RECOGNISED		.7025 - Testir TATION NUM		A	PPROVED S	IGNATORY: DATE:		bes-Taber /2022		

			DYI		ONE PEN	IETROME	TER REP	ORT			
CLIENT:	JBS&G -	SYDNEY, NS	W					PAGE: 1	5 OF: 15	DCP	: 15 (BH15)
PROJECT		CHNICAL INVE		& PAVEME	NT DESIGN			REGISTR	ATION NO:	S22-348	
	PROPOS	SED WENTWO	ORTH HEALT	H SERVICE	REDEVELOP	MENT		DAT	E OF TEST:	11/08/202	22
LOCATION	I: No. 24 I	HOSPITAL RO	AD, WENTW	ORTH, NSV	V		DEPTH	BELOW FS	L (mm):	NIL	
SOIL DES	CRIPTION	REFER TO E	BOREHOLE LOG	S & MATERIA	ALS SCHEDULE	& LOG	MOIST	URE COND	ITION:	REFER TO	LOGS
			ROUND WATE				TEST	METHOD:	AS 1289.6	.3.2	
Depth(m)	Blows	Est. CBR	Depth(m)	Blows	Est. CBR	Depth(m)	Blows	Est. CBR	Depth(m)	Blows	Est. CBR
0.0 - 0.1	4	7	1.5 - 1.6	END	*	3.0 - 3.1	*	*	4.5 - 4.6	*	*
0.1 - 0.2	5	9	1.6 - 1.7	*	*	3.1 - 3.2	*	*	4.6 - 4.7	*	*
0.2 - 0.3	6	12	1.7 - 1.8	*	*	3.2 - 3.3	*	*	4.7 - 4.8	*	*
0.3 - 0.4	5	9	1.8 - 1.9	*	*	3.3 - 3.4	*	*	4.8 - 4.9	*	*
0.4 - 0.5	5	9	1.9 - 2.0	*	*	3.4 - 3.5	*	*	4.9 - 5.0	*	*
0.5 - 0.6	5	9	2.0 - 2.1	*	*	3.5 - 3.6	*	*	5.0 - 5.1	*	*
0.6 - 0.7	4	7	2.1 - 2.2	*	*	3.6 - 3.7	*	*	5.1 - 5.2	*	*
0.7 - 0.8	4	7	2.2 - 2.3	*	*	3.7 - 3.8	*	*	5.2 - 5.3	*	*
0.8 - 0.9	4	7	2.3 - 2.4	*	*	3.8 - 3.9	*	*	5.3 - 5.4	*	*
0.9 - 1.0	4	7	2.4 - 2.5	*	*	3.9 - 4.0	*	*	5.4 - 5.5	*	*
1.0 - 1.1	4	7	2.4 - 2.5	*	*	4.0 - 4.1	*	*	5.5 - 5.6	*	*
1.1 - 1.2	3	5	2.6 - 2.7	*	*	4.0 - 4.1	*	*	5.6 - 5.7	*	*
1.2 - 1.3	4	7	2.7 - 2.8	*	*	4.1 - 4.2	*	*	5.7 - 5.8	*	*
1.2 - 1.3	5	9	2.7 - 2.8	*	*	4.2 - 4.3	*	*	5.8 - 5.9	*	*
1.4 - 1.5	7	14	2.9 - 3.0	*	*	4.4 - 4.5	*	*	5.9 - 6.0	*	*
	0	10	20	1	Curr	ulative Blo	5 0	6	0	70	80
	0					+0			U		
	200										
-	1600										
			ted for compli 17025 - Testir		REMARKS:						
WORLD		ACCRED 4679	DITATION NUN		А	PPROVED S	IGNATORY: DATE:		bes-Taber /2022		

APPENDIX D

LABORATORY TEST REPORTS

AITKEN ROWE TESTING LABORATORIES PTY LTD

ARTL	AITKEN ROWE Testing Labor ARTL Wagga: 4/2 Riedell Street, Wagga		•		AMPLED BY:	1 OF 5 ARTL 9-11/08/20	22
			VCIC				
	TEST REPORT: GEOTECHNICAL INVESTIGATION	I - SUIL ANAL	1515			15/08/2022	
	CLIENT : JBS&G - SYDNEY, NSW					AS1289.1.2	.1
JOB DES	CRIPTION : GEOTECHNICAL INVESTIGATION & PAV				NG CLAUSE:		(2022
	PROPOSED WENTWORTH HEALTH SER	-	JPMENT			15/08-9/09	/2022
	No. 24 HOSPITAL ROAD, WENTWORTH		DECION		ORDER No.:	•	
		ROPOSED USE					
MATE	RIAL TYPE : REFER TO BOREHOLE LOGS & MATERIA		-		ON No : R28	1	
	SAMPLE NUMBE		1E	11	2B	2F	3D
	SAMPLING LOCATIO		BH1	BH1	BH2	BH2	BH3
	DEPTHS BETWEEN WHICH SAMPLES TAKEN (mr		3000-3450	6000-6450	600-900	4500-4950	1500-1950
TESTS	TEST ELEMENT	*	*	*	*	*	*
AS1289.3.6.1	PASS 100.0mm SIEVE	, -	*	*	*	*	*
	PASS 75.0mm SIEVE	-	*	*	*	*	*
	PASS 53.0mm SIEVE	-	*	*	*	*	*
	PASS 37.5mm SIEVE	-	*	*	*	*	*
	PASS 26.5mm SIEVE	% *	*	*	*	*	*
	PASS 19.0mm SIEVE	% *	*	*	*	*	*
	PASS 13.2mm SIEVE		*	*	*	*	*
	PASS 9.50mm SIEVE	% *	*	*	*	*	*
	PASS 6.70mm SIEVE	% *	*	*	*	*	*
	PASS 4.75mm SIEVE	% *	*	*	*	*	*
	PASS 2.36mm SIEVE	% *	*	*	*	*	100
AS1141.19	WHOLE PASS 425 µm SIEVE	% *	*	*	*	*	100
	SAMPLE PASS 75 µm SIEVE	% *	*	*	*	*	92
	LESS THAN 13.5 μn	n% *	*	*	*	*	67
AS1141.19	PASS 425 μm SIEVE	% *	*	*	*	*	100
	-2.36mm PASS 75 μm SIEVE	% *	*	*	*	*	92
	LESS THAN 13.5 μn	n% *	*	*	*	*	67
	OBSERVATIO	NS *	*	*	*	*	*
AS1289.3.1.2	LIQUID LIMIT	% *	*	*	*	*	57
AS1289.3.2.1	PLASTIC LIMIT	% *	*	*	*	*	14
AS1289.3.3.1	PLASTICITY INE	EX *	*	*	*	*	43
	PREPARATION METH	OD *	*	*	*	*	AS1289.1.1-5.3
AS1289.5.1.1	STANDARD MAX. DRY DENSITY t/	m ³ *	*	*	*	*	*
(NOT DRY PREPPED)	OPTIMUM MOISTURE CONTENT	% *	*	*	*	*	*
	OVERSIZE MATERIAL % RETAINED ON 19.0r	nm *	*	*	*	*	*
	LL METHOD OF CURING TIME DETERMINATI	N *	*	*	*	*	*
	CURING DURATION HOL		*	*	*	*	*
AS1289.3.4.1	LINEAR SHRINKAG		14.0	7.0	13.5	11.0	*
	LENGTH OF MOULD r	nm 250	250	250	250	250	*
	CRACKING (CA), CRUMBLING (CR) OR CURLING (CU) OCCUR	RED CA	CA	CA	CA	CA	*
AS1289.2.1.1	FIELD MOISTURE CONTEN		23.6	26.3	18.0	25.3	*
WORLD RECOG ACCREDITA	ACCREDITATION NUMBER: 4679	es are oven dri VED SIGNATO	RY :	eved during p		otherwise sta 9/09/2022	ated

ARTL	AITKEN ROWE Testing ARTL Wagga: 4/2 Riedell Stree				-	AMPLED BY:	ARTL	12
	*							2
	TEST REPORT: GEOTECHNICAL INVES	FIGATION - S	SOIL ANALY	SIS				
	CLIENT : JBS&G - SYDNEY, NSW	_					ED: 9-11/08/2022 ED: 15/08/2022 OD: AS1289.1.2.1 JSE: 6.5.3 ED: 15/08-9/09/2022 No.: * R28 S22-348 4D 4 BH4 I 950 3000-3450 60 * * * * * * * * * * * * *	
JOB DES	CRIPTION : GEOTECHNICAL INVESTIGATIO							
	PROPOSED WENTWORTH HE			PMENT				2022
	No. 24 HOSPITAL ROAD, WEN					ORDER No.:	*	
MATERIA	L SOURCE : IN-SITU BOREHOLES	PRO	POSED USE :	DESIGN				
MATE	RIAL TYPE : REFER TO BOREHOLE LOGS &	MATERIALS	SCHEDULE &	LOG	REGISTRATI	ON No : R28	S22-348	
	SAMPL	E NUMBER :	3F	3H	4B	4C	. –	6A
	SAMPLING	LOCATION :	BH3	BH3	BH4	BH4		BH6
	DEPTHS BETWEEN WHICH SAMPLES TA	AKEN (mm) :	3000-3450		800-1100	1500-1950	3000-3450	600-900
TESTS	TEST ELEMENT		*	*	*	*	*	*
AS1289.3.6.1	PASS 100.0n	nm SIEVE %	*	*	*	*	*	*
	PASS 75.0n	nm SIEVE %	*	*	*	*	*	*
	PASS 53.0n	nm SIEVE %	*	*	*	*	*	*
	PASS 37.5n	nm SIEVE %	*	*	*	*	*	*
	PASS 26.5n	nm SIEVE %	*	*	*	*	*	*
	PASS 19.0n	nm SIEVE %	*	*	*	*	*	*
	PASS 13.2n	nm SIEVE %	*	*	*	*	*	*
	PASS 9.50n	nm SIEVE %	*	*	*	*	*	*
	PASS 6.70n	nm SIEVE %	*	*	*	*	*	*
	PASS 4.75n	nm SIEVE %	*	*	*	*	*	*
	PASS 2.36n	nm SIEVE %	*	100	*	*	*	*
AS1141.19	WHOLE PASS 425	um SIEVE %	*	100	*	*	*	*
	SAMPLE PASS 75	um SIEVE %	*	33	*	*	*	*
		N 13.5 μm %	*	21	*	*	*	*
AS1141.19		um SIEVE %	*	100	*	*	*	*
	-	um SIEVE %	*	33	*	*	*	*
		N 13.5 μm %	*	21	*	*	*	*
	OB	SERVATIONS	*	*	*	*	*	*
AS1289.3.1.2	LIQI	JID LIMIT %	*	38	*	*	*	*
AS1289.3.2.1	PLAS	TIC LIMIT %	*	16	*	*	*	*
AS1289.3.3.1	PLAS ⁻	FICITY INDEX	*	22	*	*	*	*
	PREPARATIO	ON METHOD	*	AS1289.1.1-5.3	*	*	*	*
AS1289.5.1.1	STANDARD MAX. DRY D	ENSITY t/m ³	*	*	*	*	*	*
NOT DRY PREPPED)	OPTIMUM MOISTURE	-	*	*	*	*	*	*
,	OVERSIZE MATERIAL % RETAINED		*	*	*	*	*	*
	LL METHOD OF CURING TIME DETE	RMINATION	*	*	*	*	*	*
	CURING DURA	TION HOURS	*	*	*	*	*	*
AS1289.3.4.1		HRINKAGE %	18.0	*	15.5	10.0	12.5	13.5
	LENGTH OF	MOULD mm	250	*	250	254	250	250
	CRACKING (CA), CRUMBLING (CR) OR CURLING (CU) OCCURRED	CA	*	CA	CA	CA	CA
AS1289.2.1.1	FIELD MOISTURE		27.3	*	20.1	26.8	27.6	23.3
WORLD RECOG ACCREDITA	ACCREDITATION NUMBER: 4679 NISED		<u>re oven drie</u> D SIGNATOR	-19	ved during p		otherwise sta 9/09/2022	ted

ARTL	AITKEN ROWE Testing Labora ARTL Wagga: 4/2 Riedell Street, Wagga W		-	-	AMPLED BY:	ARTL		
	*							
	TEST REPORT: GEOTECHNICAL INVESTIGATION	SOIL ANALY	SIS					
	CLIENT : JBS&G - SYDNEY, NSW	agga NSW 2650 SAMPLED BY: ARTL SOIL ANALYSIS DATE SAMPLED: 9-11/08/20 SOIL ANALYSIS DATE SUBMITTED: 15/08/2022 SAMPLING METHOD: AS1289.1.2 SAMPLING CLAUSE: 6.5.3 DATES TESTED: 15/08-9/09 ORDER NO:: * OPOSED USE : DESIGN SCHEDULE & LOG SCHEDULE & LOG REGISTRATION NO: R28 S22-348 C 6C 6E 7B 7D BH6 BH6 BH7 BH7 BH6 BH6 BH7 BH7 S CHEDULE & LOG * * * S CHEDULE & LOG REGISTRATION 0: R28 S22-348 S CHEDULE & LOG REGISTRATION 0: R28 S22-348 S CHEDULE & LOG 8 * * S CHEDULE & LOG 8 8 * S CHEDULE & LOG 8 8 * * S CHEDULE & LOG 8 * * * S CHEDULE & LOG 8 * * * * S * * * * * * * S * * * *			.1			
JOB DES	CRIPTION : GEOTECHNICAL INVESTIGATION & PAVE					ED BY: ARTL IPLED: 9-11/08/2022 ITTED: 15/08/2022 ITTED: 15/08-9/09/202 THOD: AS1289.1.2.1 AUSE: 6.5.3 ESTED: 15/08-9/09/202 IR NO.: * 0: R28 S22-348 7D 7E 0: R28 S22-348 7D 7E 3H7 BH7 0: 1950 3000-3450 40 * * *		
	PROPOSED WENTWORTH HEALTH SERVI		PMENT				/2022	
	No. 24 HOSPITAL ROAD, WENTWORTH,		DECICN		URDER NO.:			
MATE	RIAL TYPE : REFER TO BOREHOLE LOGS & MATERIAL		1					
	SAMPLE NUMBER		-				SG8	
		-	-				BH8 400-1000	
TESTS	DEPTHS BETWEEN WHICH SAMPLES TAKEN (mm) TEST ELEMENT	*				3000-3450 *	400-1000	
AS1289.3.6.1	PASS 100.0mm SIEVE 9	· *				*	*	
A31209.3.0.1	PASS 100.0mm Sieve /	-	*	*		*	*	
	PASS 73.0mm SIEVE 9		*	*	*	*	*	
	PASS 35.0mm Sieve / PASS 37.5mm Sieve /		*	*	*	*	*	
	PASS 26.5mm SIEVE 9		*	*	*	*	*	
	PASS 19.0mm SIEVE 9		*	*	*	*	*	
	PASS 13.2mm SIEVE 9		*	*	*	*	*	
	PASS 9.50mm SIEVE 9		*	*	*	*	*	
	PASS 6.70mm SIEVE 9	*	*	*	*	*	*	
	PASS 4.75mm SIEVE 🦻	*	*	*	*	*	*	
	PASS 2.36mm SIEVE 9	, *	*	*	*	*	100	
AS1141.19	WHOLE PASS 425 µm SIEVE 9	, *)	*	*	*	*	99	
	SAMPLE PASS 75 µm SIEVE 9	*	*	*	*	*	80	
	LESS THAN 13.5 μm S	~ *	*	*	*	*	53	
AS1141.19	PASS 425 μm SIEVE ۶	, *	*	*	*	*	99	
	-2.36mm PASS 75 μm SIEVE 9	*	*	*	*	*	80	
	LESS THAN 13.5 μm s	~ *	*	*	*	*	53	
	OBSERVATION						*	
AS1289.3.1.2	LIQUID LIMIT	0		*	*	*	53	
AS1289.3.2.1	PLASTIC LIMIT		-	*	*	*	14	
AS1289.3.3.1	PLASTICITY INDE	^	-				39	
	PREPARATION METHO	5		*	*	*	AS1289.1.1-5.3	
AS1289.5.1.1	STANDARD MAX. DRY DENSITY t/m		*	*	* *	* *	1.64	
(NOT DRY PREPPED)	OPTIMUM MOISTURE CONTENT OVERSIZE MATERIAL % RETAINED ON 19.0mr		*	*	*	*	21.2	
	LL METHOD OF CURING TIME DETERMINATIO		*	*	*	*	0.0	
			*	*	*	*	VISUAL	
AS1289.3.4.1	CURING DURATION HOUR LINEAR SHRINKAGE	3	13 5	15 5	11 5	17 0	>168 *	
, .51205.5.4.1	LENGTH OF MOULD mi						*	
	CRACKING (CA), CRUMBLING (CR) OR CURLING (CU) OCCURRE						*	
AS1289.2.1.1	FIELD MOISTURE CONTENT						17.0	
WORLD RECOG ACCREDITA	ACCREDITATION NUMBER: 4679 NISED	are oven drie ED SIGNATOR	γ: <i>€€</i>	ved during p	·		ated	

ARTL	AITKEN ROWE Testing La ARTL Wagga: 4/2 Riedell Street, Wa		-	-	MPLED BY:			
	*						9-11/08/202	
	TEST REPORT: GEOTECHNICAL INVESTIGA	TION - S	SOIL ANALYS	SIS			15/08/2022	
	CLIENT : JBS&G - SYDNEY, NSW						AS1289.1.2.1	
JOB DES	CRIPTION : GEOTECHNICAL INVESTIGATION 8					NG CLAUSE:		10.000
	PROPOSED WENTWORTH HEALTH		-	PMENT			15/08-9/09,	/2022
	No. 24 HOSPITAL ROAD, WENTWO					ORDER No.:	*	
MATERIA	L SOURCE : IN-SITU BOREHOLES	PROF	POSED USE :	DESIGN				
MATE	RIAL TYPE : REFER TO BOREHOLE LOGS & MA	TERIALS S	SCHEDULE &	LOG	REGISTRATI	ON No : R28	S22-348	-
	SAMPLE NU	SG9	SG10	SG11	SG12	SG13	SG14	
	SAMPLING LOC		BH9	BH10	BH11	BH12	BH13	BH14
	DEPTHS BETWEEN WHICH SAMPLES TAKEN	l (mm) :	400-1500	400-1200	800-1500	200-600	700-1200	500-1300
TESTS	TEST ELEMENT	*	*	*	*	*	*	
AS1289.3.6.1	PASS 100.0mm S	IEVE %	*	*	*	*	*	*
	PASS 75.0mm S	IEVE %	*	*	*	*	*	*
	PASS 53.0mm S	IEVE %	*	*	*	*	*	*
	PASS 37.5mm S	IEVE %	*	*	*	*	*	*
	PASS 26.5mm S	IEVE %	*	*	*	*	*	*
	PASS 19.0mm S	IEVE %	*	*	*	*	*	*
	PASS 13.2mm S	IEVE %	*	*	*	*	*	*
	PASS 9.50mm S	IEVE %	*	*	*	*	*	*
	PASS 6.70mm S	IEVE %	*	*	100	*	*	*
	PASS 4.75mm S	IEVE %	*	*	100	*	*	*
	PASS 2.36mm S	IEVE %	100	100	99	100	100	100
AS1141.19	WHOLE PASS 425 µm S	IEVE %	99	99	99	99	98	99
	SAMPLE PASS 75 μm S	IEVE %	82	86	89	83	80	82
	LESS THAN 13	.5 μm %	65	64	49	65	65	59
AS1141.19	PASS 425 μm S	IEVE %	99	99	100	99	98	99
	-2.36mm PASS 75 μm S	IEVE %	82	86	89	83	80	82
	LESS THAN 13	.5 μm %	65	64	49	65	65	59
	OBSERV	ATIONS	*	*	*	*	*	*
AS1289.3.1.2	LIQUID I	IMIT %	57	56	44	56	57	54
AS1289.3.2.1	PLASTIC I	IMIT %	13	13	15	13	13	14
AS1289.3.3.1	PLASTICIT	Y INDEX	44	43	29	43	44	40
	PREPARATION N	IETHOD	AS1289.1.1-5.3	AS1289.1.1-5.3	AS1289.1.1-5.3	AS1289.1.1-5.3	AS1289.1.1-5.3	AS1289.1.1-5.3
AS1289.5.1.1	STANDARD MAX. DRY DENSI	TY t/m ³	1.63	1.61	1.76	1.60	1.60	1.69
(NOT DRY PREPPED)	OPTIMUM MOISTURE CON	TENT %	21.7	20.9	17.7	22.0	21.3	19.4
	OVERSIZE MATERIAL % RETAINED ON 2	19.0mm	0.0	0.0	0.0	0.0	0.0	0.0
	LL METHOD OF CURING TIME DETERMI	NATION	VISUAL	VISUAL	VISUAL	VISUAL	VISUAL	VISUAL
	CURING DURATION	HOURS	>168	>168	>168	>168	>168	>168
AS1289.3.4.1	LINEAR SHRIN	KAGE %	*	*	*	*	*	*
	LENGTH OF MOU	JLD mm	*	*	*	*	*	*
	CRACKING (CA), CRUMBLING (CR) OR CURLING (CU) O		*	*	*	*	*	*
AS1289.2.1.1	FIELD MOISTURE CON	ITENT %	17.1	13.8	19.2	15.9	15.9	18.3
WORLD RECOG ACCREDITA	ACCREDITATION NUMBER: 4679	·	re oven dried O SIGNATOR	, -tt	ved during p		otherwise sta 9/09/2022	ited

ARTL	•	AITKEN ROWE Testing Laboratories Pty Ltd ARTL Wagga: 4/2 Riedell Street, Wagga Wagga NSW 2650 *					5 OF 5 ARTL 9-11/08/202	22	
	TEST REPORT: GEOTECHNICAL INVESTIGATIO						TTED: 15/08/2022		
	CLIENT : JBS&G - SYDNEY, NSW	UN - 3					D: AS1289.1.2.1		
	CRIPTION : GEOTECHNICAL INVESTIGATION & PA				SAMPLING CLAUSE:			1	
JOB DES	PROPOSED WENTWORTH HEALTH SE						15/08-9/09,	/2022	
	No. 24 HOSPITAL ROAD, WENTWOR	-	-			ORDER No.:		2022	
ΜΔΤΕΒΙΔΙ	L SOURCE : IN-SITU BOREHOLES		POSED USE :	DESIGN		ONDER NO			
		-					c 2 2 2 4 9		
MATER	RIAL TYPE : REFER TO BOREHOLE LOGS & MATE			LUG *	REGISTRATI *	ION No : R28 *	322-340	*	
	SAMPLE NUM		SG15	*	*	*	*	*	
			BH15	*	*	*	*	*	
тесте	DEPTHS BETWEEN WHICH SAMPLES TAKEN (r	mm) :	300-900 *	*	*	*	*	*	
TESTS	TEST ELEMENT	15 0/	*	*	*	*	*	*	
AS1289.3.6.1	PASS 100.0mm SIEV	-	*	*	*	*	*	т. Ф	
	PASS 75.0mm SIEV	-	*	*	*	т *	*	*	
	PASS 53.0mm SIEV	-	*	*	т •	т •	*	т Ф	
	PASS 37.5mm SIEV		↑ ↓	т т	±	↑ ⊥	÷	т т	
	PASS 26.5mm SIEV	-	*	* •	* *	*	* ↓	* •	
	PASS 19.0mm SIEV	-	*	*	*	*	*	*	
	PASS 13.2mm SIEV		*	*	*	*	*	т Т	
	PASS 9.50mm SIEV	-	*	*	*	*	*	*	
	PASS 6.70mm SIEV	-	*	*	*	*	*	*	
	PASS 4.75mm SIEV	-	*	*	*	*	*	*	
	PASS 2.36mm SIEV		100	•	•	*	·	*	
AS1141.19	WHOLE PASS 425 μm SIEV		99	*	*	*	*	*	
	SAMPLE PASS 75 µm SIEV		84	*	*	*	*	*	
	LESS THAN 13.5	-	62	*	*	*	*	*	
AS1141.19	PASS 425 μm SIE\		99	*	*	*	*	*	
	-2.36mm PASS 75 μm SIE\		84	*	*	*	*	*	
	LESS THAN 13.5		62	*	*	*	•	*	
	OBSERVAT		*	*	*	*	*	*	
AS1289.3.1.2	LIQUID LIN		53	*	*	*	*	*	
AS1289.3.2.1	PLASTIC LIN		14	*	*	*	*	*	
AS1289.3.3.1	PLASTICITY I		39	*	*	*	*	*	
	PREPARATION MET			*	*	*	*	*	
AS1289.5.1.1	STANDARD MAX. DRY DENSITY		1.62	*	*	*	*	*	
(NOT DRY PREPPED)	OPTIMUM MOISTURE CONTEI		21.4	*	*	*	*	*	
	OVERSIZE MATERIAL % RETAINED ON 19.	-	0.0	*	*	*	*	*	
	LL METHOD OF CURING TIME DETERMINA		VISUAL	*	*	*	*	*	
	CURING DURATION H		>168	*	*	*	*	*	
AS1289.3.4.1	LINEAR SHRINKA		*	*	*	*	*	*	
	LENGTH OF MOULE		*	*	*	*	*	*	
	CRACKING (CA), CRUMBLING (CR) OR CURLING (CU) OCCU		*	*	*	*	*	*	
AS1289.2.1.1	FIELD MOISTURE CONTE	ENT %	14.8	*	*	*	*	*	
	* Accredited for compliance with ISO/IEC 17025 - Testing. AII sam ACCREDITATION NUMBER: 4679	iples a	re oven drie	d and dry si	eved during p	prep. unless (otherwise sta	ited	
WORLD RECOG		ROVED	SIGNATOR		rbes-Taber	DATE:	9/09/2022		

AITKEN ROWE Testing Labo	orate	ories Ptv	. Ltd		PAGE 1 of	2
ARTL Wagga Wagga: 4/2 Riedell Street, W		-			SAMPLED BY:	
TEST REPORT				D	ATE SAMPLED:	
CALIFORNIA BEARING RATIO OF SOILS AND GRAVELS			DATE RECEIVED: 15/08/2022			
CLIENT: JBS&G - SYDNEY, NSW	00.10				COMMENCED:	
JOB DESCRIPTION: GEOTECHNICAL INVEST	IGATIC	N & PAVEME	NT DESIGN		G COMPLETED:	
PROPOSED WENTWORTH					EST METHODS:	
No. 24 HOSPITAL ROAD			-		AS1289.5.1.1	
SOURCE OF MATERIAL: IN-SITU BOREHOLES	,	1000000		SAMPLING	G PROCEDURE:	
PROPOSED USE: FOUNDATION & PAVEN	AENT D	FSIGN			PLING CLAUSE:	
		201011			ATION NO : R6	
SAMPLE	NO:	SG8	SG9	SG10	SG11	SG12
SITE OR LOCAT		BH8	BH9	BH10	BH11	BH12
DEPTHS BETWEEN WHICH SAMPLES TAKEN (r		400-1000	400-1500	400-1200	800-1500	200-600
ADDITIVE IF STABILI		N/A	N/A	N/A	N/A	N/A
AMOUNT OF ADDITIVE	E (%)	NIL	NIL	NIL	NIL	NIL
TYPE OF COMPACTION (Standard/Modif	fied)	STANDARD	STANDARD	STANDARD	STANDARD	STANDARD
MATERIAL RETAINED ON THE 19.0mm SIEVE (%)		0.0	0.0	0.0	0.0	0.0
OPTIMUM MOISTURE CONTENT	(%)	21.2	21.7	20.9	17.7	22.0
MAXIMUM DRY DENSITY (t/	/m³)	1.64	1.63	1.61	1.76	1.60
MOULDING MOISTURE CONTENT	(%)	21.2	21.8	20.9	17.6	21.6
DRY DENSITY OF TEST SPECIMEN (t/	/m³)	1.56	1.55	1.53	1.66	1.52
SPECIFIED LDR	R (%)	95	95	95	95	95
ACTUAL LDR	R (%)	95	95	95	95	95
MOISTURE CONTENTS : TOP 30	mm	27.3	34.0	30.3	23.9	34.8
WHOLE SAM	1PLE	25.0	27.1	27.0	23.0	27.2
ABSORPTION	(%)	3.8	5.3	6.1	5.4	5.6
SPECIFIED LMR	R (%)	100	100	100	100	100
ACTUAL LMR	R (%)	100	101	100	99	98
NUMBER OF DAYS SOAK	KING	10	10	10	10	10
SWELL	(%)	1.9	4.8	3.0	2.2	5.2
CBR OBTAINED FROM PENETRATION (r	mm)	2.5	2.5	2.5	2.5	2.5
CALIFORNIA BEARING RATIO	(%)	3.5	3	3	4	3
NOTES: T117 specifications: LM *	IR -3% 1	to +2%, LDR ±	1%			
COMMENTS: *						
Accredited for compliance wit ISO/IEC 17025 - Testing.	th			-til	4	

ISO/IEC 17025 - Testing.

ACCREDITATION NUMBER:

APPROVED SIGNATORY:

DATE:

Peter Forbes-Taber 9/09/2022

WORLD RECOGNISED

ARTL Wagga Wagga: 4/2 Riedell Street, Wagga Wagga NSW 2650				SAMPLED BY:	ARTI	
TEST REPORT				D	ATE SAMPLED:	9-11/08/20
CALIFORNIA BEARING RATIO OF	S AND GRAVE	ELS		15/08/2022		
CLIENT: JBS&G - SYDNEY, NSW			-		COMMENCED:	
JOB DESCRIPTION: GEOTECHNICAL INVEST		ION & PAVEME	NT DESIGN		G COMPLETED:	
PROPOSED WENTWORTH					ST METHODS:	
No. 24 HOSPITAL ROAD					AS1289.5.1.1	
SOURCE OF MATERIAL: IN-SITU BOREHOLES		,	-	SAMPLING	6 PROCEDURE:	
PROPOSED USE: FOUNDATION & PAVE	MENT	DESIGN			LING CLAUSE:	
					ATION NO : R6	
SAMPLE	NO:	SG13	SG14	SG15	*	*
SITE OR LOCA	TION	BH13	BH14	BH15	*	*
DEPTHS BETWEEN WHICH SAMPLES TAKEN (mm)	700-1200	500-1300	300-900	*	*
ADDITIVE IF STABIL	ISED	N/A	N/A	N/A	*	*
AMOUNT OF ADDITIV	NIL	NIL	NIL	*	*	
TYPE OF COMPACTION (Standard/Modi	ified)	STANDARD	STANDARD	STANDARD	*	*
MATERIAL RETAINED ON THE 19.0mm SIEVE (%)		0.0	0.0	0.0	*	*
OPTIMUM MOISTURE CONTENT (%)		21.3	19.4	21.4	*	*
MAXIMUM DRY DENSITY (t/m ³)		1.60	1.69	1.62	*	*
MOULDING MOISTURE CONTENT (%)		21.5	19.4	20.9	*	*
DRY DENSITY OF TEST SPECIMEN (t	t/m³)	1.52	1.41	1.54	*	*
SPECIFIED LDF	R (%)	95	95	95	*	*
ACTUAL LDF	R (%)	95	83	95	*	*
MOISTURE CONTENTS : TOP 30) mm	30.2	26.1	28.3	*	*
WHOLE SAM	VIPLE	25.5	23.9	25.6	*	*
ABSORPTION	I (%)	3.9	4.5	4.7	*	*
SPECIFIED LMI	R (%)	100	100	100	*	*
ACTUAL LMI	R (%)	101	100	98	*	*
NUMBER OF DAYS SOAI	KING	10	10	10	*	*
SWELL	(%)	3.1	2.5	2.9	*	*
CBR OBTAINED FROM PENETRATION (mm)	2.5	2.5	2.5	*	*
CALIFORNIA BEARING RATIO	(%)	3	3	3.5	*	*
NOTES: T117 specifications: LM *	/IR -3%	% to +2%, LDR ±	1%			
COMMENTS: *						
Accredited for compliance wi ISO/IEC 17025 - Testing.	ith		ED SIGNATORY:	Peter For	4	

9/09/2022

DATE:

ACCREDITATION NUMBER:

WORLD RECOGNISED

ARTL Wagga: 4/2 Riedell Street, Wag	ga Wagga NSW 2650		
TEST REPORT			SAMPLED BY: ARTL
SOIL REACTIVITY- DETERMINATION OF THE SHRINI			DATE SAMPLED BY: ARTL
SOIL REACTIVITY- DETERMINATION OF THE SHRINI SHRINK SWELL INDEX	NAUL INDLA UF A JUIL		DATE SAMPLED: 9-11/8/2022 DATE SUBMITTED: 15/08/2022
SHRINK SWELL INDEX			
			TE TESTED (from): 22/08/2022
CLIENT: JBS&G - SYDNEY, NSW			DATE TESTED (to): 9/09/2022
JOB DESCRIPTION GEOTECHNICAL INVESTIGATION			No. OF SAMPLES: 4
PROPOSED WENTWORTH HEAL		MENT	TEST METHODS: AS1289.7.1.
No. 24 HOSPITAL ROAD, WENTV	WORTH, NSW		AS1289.2.1.
		REGI	STRATION NO: R26 S22-348
SAMPLE No.:	1B	2B	4B
BOREHOLE No.:	BH1	BH2	BH4
DEPTH (mm):	500-800	600-900	800-1100
NATURE OF SPECIMEN (U50/REMOULDED):	U50	U50	U50
SHRINK SWELL INDEX (ISS):	3.88	3.87	3.63
INITIAL SWELL M.C. %:	20.5	21.8	18.0
FINAL SWELL M.C. %:	22.2	25.7	24.6
DESCRIPTION OF SOIL:	СН	СН	СН
ESTIMATED PERCENTAGE OF INERT INCLUSIONS:	<5%	<2%	<2%
EXTENT OF SOIL CRUMBLING DURING SHRINKAGE:	NIL	NIL	NIL
EXTENT OF CRACKING OF SHRINKAGE SPECIMEN:	NIL	NIL	NIL
WHERE REMOULDED) SPECIMEN DENSITY (t/m ³):	N/A	N/A	N/A
MOISTURE ADDED TO ACHIEVE OMC (%):	N/A	N/A	N/A
COMPACTIVE EFFORT (BLOWS/ LAYER):	N/A	N/A	N/A
SAMPLE No.:	7B	*	*
BOREHOLE No.:	BH7	*	*
DEPTH:	500-900	*	*
NATURE OF SPECIMEN (U50/REMOULDED):	U50	*	*
SHRINK SWELL INDEX (ISS):	3.84	*	*
INITIAL SWELL M.C. %:	20.8	*	*
FINAL SWELL M.C. %:	26.5	*	*
	CH	*	*
ESTIMATED PERCENTAGE OF INERT INCLUSIONS:	<5%	*	*
EXTENT OF SOIL CRUMBLING DURING SHRINKAGE:	NIL	*	*
EXTENT OF CRACKING OF SHRINKAGE SPECIMEN:	NIL N/A	*	*
WHERE REMOULDED) SPECIMEN DENSITY (t/m ³):	N/A	*	*
MOISTURE ADDED TO ACHIEVE OMC (%): COMPACTIVE EFFORT (BLOWS/ LAYER):	N/A N/A	*	*
Accredited for compliance with ISO/IEC 17025 - Testing. ACCREDITATION NUMBER: 4679	APPROVED SIG	Pete	er Forbes-Taber 9/9/2022

APPENDIX E

LABORATORY TEST REPORTS

SYDNEY ENVIRONMENTAL & SOIL LABORATORY PTY LTD

Corrosion & Scaling Assessment: Soil Reporting Profile

 Sample Drop Off:
 16 Chilvers Road Thornleigh NSW 2120
 Tel:
 1300 30 40 80

 Mailing Address:
 PO Box 357 Pennant Hills NSW 1715
 Em:
 info@sesl.com.au

 Web:
 www.sesl.com.au

Batch N°: 63371	Sample N°: 1	Date Received	: 17/8/22	Report Status:	Final
Client Name:	Aitken Rowe Testing Laboratories (ARTL) Pty Ltd	Project Name: SESL Quote N°	S22-348-In-Situ Borehole		
Client Contact:	Reports	Sample Name:	1F		
Client Order N°:	S22-348	Description:	Soil		
Address:	PO Box 5158 WAGGA WAGGA NSW 2650	Test Type:	ARTL		

TEST		RESULT	COMMENTS
pH in water (1:5))	9	Strong alkalinity
EC mS/cm (1:5))	0.61	Moderate
Texture Class		-	Did not test
Soil Condition C (Permeability)	lass	-	Did not test
SOLUBLE ANIC	ON ANALYSIS		
Sulphate (1:5)	mgSO₄/ kg	630	Low (non to mildly aggressive)
Chloride (1:5)	mgCl / kg	1410	Low (non-aggressive)
* Resistivity Ω.	m	140	High (non-aggressive)

* Resistivity tested on a saturated sample/paste

(Note:- 10,000 mg/kg = 1%)

Recommendations

Analysed by SESL Australia Pty Ltd (NATA # 15633).

For the purposes of this corrosion and scaling assessment of soils towards concrete structures with steel reinforcement, concrete and steel piles, this soil shows strong alkalinity, moderate salinity, low sulphate, low chloride and high resistivity.

According to the Australian Standard (AS) 2159-2009: Piling - Design and Installation, the pH is considered mild to non-aggressive towards concrete (dependent on soil permeability) and non-aggressive towards steel. The sulfate levels are considered to be non-to mildly aggressive towards concrete. The chloride levels and resistivity are considered to be non-aggressive towards steel.

Factors affecting concrete scaling are: (a) elevated sulfate, becoming mildly aggressive at >2400 mgSO₄/kg; and (b) low pH, becoming moderately aggressive at pH of <5-6.

Factors affecting steel corrosivity are: (a) elevated chloride, becoming mildly aggressive at >5,000 mgCl/kg; and (b) low pH, becoming mildly aggressive at pH of <4-5 and (d) low resistivity, becoming mildly aggressive with resistivity values less than 50Ω .m.

Overall, according AS2159-2009, the likelihood of aggressive corrosion is low to mild.

pH, EC, Soluble SO4: Bradley et al., (1983); **CI**, (4500-CI- E; APHA, 1998); **Resistivity**, AS1289.4.4.1:1997, **Texture** - PM0003 (Texture- "Northcote" (1992))

Date Report Generated 25/08/2022

Consultant: Jane Koo

SMA

Authorised Signatory: Samantha Grant-Vest

Tests are performed under a quality system certified as complying with ISO 9001: 2008. Results and conclusions assume that sampling is representative. This document shall not be reproduced except in full

Corrosion & Scaling Assessment: Soil Reporting Profile

 Sample Drop Off:
 16 Chilvers Road Thornleigh NSW 2120
 Tel:
 1300 30 40 80

 Mailing Address:
 PO Box 357 Pennant Hills NSW 1715
 Em:
 info@sesl.com.au

 Web:
 www.sesl.com.au

Batch N°: 63371	Sample N°: 2	Date Received	: 17/8/22	Report Status:	Final
Client Name:	Aitken Rowe Testing Laboratories (ARTL) Pty Ltd	Project Name: SESL Quote N°	S22-348-In-Situ Borehole		
Client Contact:	Reports	Sample Name:	3E		
Client Order N°:	S22-348	Description:	Soil		
Address:	PO Box 5158 WAGGA WAGGA NSW 2650	Test Type:	ARTL		

TEST	RESULT	COMMENTS
pH in water (1:5)	9.3	Strong alkalinity
EC mS/cm (1:5)	0.27	Slight
Texture Class	-	Did not test
Soil Condition Class (Permeability)	-	Did not test
SOLUBLE ANION ANALYSIS		
Sulphate (1:5) mgSO₄/ kg	210	Low (non to mildly aggressive)
Chloride (1:5) mgCl / kg	340	Low (non-aggressive)
* Resistivity Ω. m	8.2	Low (moderately to severely aggressive)

* Resistivity tested on a saturated sample/paste

(Note:- 10,000 mg/kg = 1%)

Recommendations

Analysed by SESL Australia Pty Ltd (NATA # 15633).

For the purposes of this corrosion and scaling assessment of soils towards concrete structures with steel reinforcement, concrete and steel piles, this soil shows strong alkalinity, slight salinity, low sulphate, low chloride and low resistivity.

According to the Australian Standard (AS) 2159-2009: Piling - Design and Installation, the pH is considered mild to non-aggressive towards concrete (dependent on soil permeability) and non-aggressive towards steel. The sulfate levels are considered to be non-to mildly aggressive towards concrete, and chloride levels are non-aggressive to steel. Resistivity is considered to be moderately to severely aggressive towards steel, due to lack of permeability class.

Factors affecting concrete scaling are: (a) elevated sulfate, becoming mildly aggressive at >2400 mgSO₄/kg; and (b) low pH, becoming moderately aggressive at pH of <5-6.

Factors affecting steel corrosivity are: (a) elevated chloride, becoming mildly aggressive at >5,000 mgCl/kg; and (b) low pH, becoming mildly aggressive at pH of <4-5 and (d) low resistivity, becoming mildly aggressive with resistivity values less than 50Ω .m.

Overall, according AS2159-2009, the likelihood of aggressive corrosion is moderate.

pH, EC, Soluble SO4: Bradley et al., (1983); **CI**, (4500-CI- E; APHA, 1998); **Resistivity**, AS1289.4.4.1:1997, **Texture** - PM0003 (Texture- "Northcote" (1992))

Date Report Generated 25/08/2022

Consultant: Jane Koo

SIII

Authorised Signatory: Samantha Grant-Vest

Tests are performed under a quality system certified as complying with ISO 9001: 2008. Results and conclusions assume that sampling is representative. This document shall not be reproduced except in full

APPENDIX F

CIRCLY DESIGN PRINTOUTS

AITKEN ROWE TESTING LABORATORIES PTY LTD

DESIGN TRAFFIC CALCULATION

Reg. No.:

S22-348

Project:

Proposed Wentworth Health Service Redevelopment, 24 Hospital Road, Wentworth, NSW

1. AADT:			
I. AADT.	43		
2. HV%:	25.00	1	
3. Direction Factor (DF):	0.5		
4. Lane Distribution Factor (LDF):	1.0		
5. Design Life (Years)	30		
6. Growth Rate:	0%		
7. Cumulative Growth Factor (CGF)	30.00		
8. Average number of axle groups per Heavy Vehicle (Nhvag):	2.5		
9. ESA/HVAG:	0.443		
10. Use of Design Lane %	100.0		
	Ni=	5.375	HVs
	Ni=	5.375	HVs
Nhv=365xCGFxNi			
	gn lane duri	ng design p	
	gn lane duri Nhv=	ng design p 5.89E+04	eriod
Nhv= Cumulative number of Heavy Vehicles trasversing the desi			eriod
Nhv= Cumulative number of Heavy Vehicles trasversing the design Nhv= NhvxNhvag	Nhv=	5.89E+04	eriod HVs
Nhv=365xCGFxNi Nhv= Cumulative number of Heavy Vehicles trasversing the desig Ndt=NhvxNhvag Ndt=Cumulative number of heavy vehicle axle groups in the desi	Nhv=	5.89E+04	eriod HVs eriod
Nhv= Cumulative number of Heavy Vehicles trasversing the design Nhv= NhvxNhvag	Nhv= ign lane duri	5.89E+04 ng design p	eriod HVs eriod

6.52E+04 DESA=

CIRCLY - Version 7.0 (1 February 2022)

Job Title: S22-348 Proposed Wentworth Health Services Redelopment, 24 Hospital Road, Wentworth, NSW

Design Method: Austroads 2017

NDT (cumulative heavy vehicle axle groups over design period): 1.47E+05

Traffic Load Distribution:

ID: LTR - 04 Name: Lightly-Trafficked Roads - 04 - local access with buses ESA/HVAG: 0.443

Details of Load Groups:

Load No.	Load ID	Load Category		Load Type		Radius	Pressure/ Ref. stress	Exponent
1	ESA750-Full	ESA750-Full		Vertical Fo	orce	92.1	0.75	0.00
2	SAST53	SAST53		Vertical Fo	orce	102.4	0.80	0.00
Load I	Locations:							
Locati	on Load	Gear	Х	Y	Sc	caling	Theta	
No.	ID	No.			Fa	actor		
1	ESA750-Full	1	-165.0	0.0	0 1.	.00E+00	0.00	
2	ESA750-Full	1	165.0	0.0	0 1.	.00E+00	0.00	
3	ESA750-Full	1	1635.0	0.0	0 1.	.00E+00	0.00	
4	ESA750-Full	1	1965.0	0.0	0 1.	.00E+00	0.00	
1	SAST53	1	0.0	0.0	0 1.	.00E+00	0.00	
2	SAST53	1	2130.0	0.0	0 1	.00E+00	0.00	

Details of Layered System:

ID: S22-348 Title: Proposed Wentworth Health Services Revelopment, Hospital Road, Wentworth

Layer No.	Lower i/face	Material ID	Isotropy	Modulus (or Ev)	P.Ratio (or vvh)	F	Eh	vh
1	rough	Gran 250	Aniso.	2.50E+02	0.35	1.85E+02	1.25E+02	0.35
2	2							
	rough	Gran_250	Aniso.	2.50E+02	0.35	1.85E+02	1.25E+02	0.35
3	rough	Sub_CBR3	Aniso.	3.00E+01	0.45	2.07E+01	1.50E+01	0.45
Perfor	mance Rel	ationships:						
Layer	Location	Material	Component	Perform.	Perform.	Shift		
No.		ID		Constant	Exponent	Factor		
3	top	Sub_CBR3	ΕZΖ	0.009150	7.000			
Reliab	ility Fac	tors:						
Projec	t Reliabi	lity: Austroads 95%						
Layer	Reliabil	ity Material						
No.	Factor	Type						
3	1.00	Subgrade (Austroads	2017)					
-			- /					
Dotoil	a of Tavo	ra to bo sublavorod.						

Details of Layers to be sublayered: Layer no. 1: Austroads (2004) sublayering Layer no. 2: Austroads (2004) sublayering

Strains:

Layer No. 3	Thickness 0.00	Material ID Sub_CBR3	Axle	Unitless Strain 1.871E-03
Results:			SAD1 (00).	1.0711 03

Layer No.	Thickness	Material	Axle Group	CDF
1	200.00	Gran_250	GIOGP	n/a
2	225.00	Gran_250		n/a
3	0.00	Sub_CBR3	Total:	9.746E-01

CIRCLY - Version 7.0 (1 February 2022)

Job Title: S22-348 Proposed Wentworth Health Services Redelopment, 24 Hospital Road, Wentworth, NSW

Design Method: Austroads 2017

NDT (cumulative heavy vehicle axle groups over design period): 1.47E+05

Traffic Load Distribution:

ID: LTR - 04 Name: Lightly-Trafficked Roads - 04 - local access with buses ESA/HVAG: 0.443

Details of Load Groups:

Load No.	Load ID	Load Category		Load Type	Radius	Pressure/ Ref. stress	Exponent
1	ESA750-Full	ESA750-Full		/ertical For	ce 92.1	0.75	0.00
2	SAST53	SAST53	Ţ	Vertical For	ce 102.4	0.80	0.00
Load L	ocations:						
Locati	on Load	Gear	Х	Y	Scaling	Theta	
No.	ID	No.			Factor		
1	ESA750-Full	1	-165.0	0.0	1.00E+00	0.00	
2	ESA750-Full	1	165.0	0.0	1.00E+00	0.00	
3	ESA750-Full	1	1635.0	0.0	1.00E+00	0.00	
4	ESA750-Full	1	1965.0	0.0	1.00E+00	0.00	
1	SAST53	1	0.0	0.0	1.00E+00	0.00	
2	SAST53	1	2130.0	0.0	1.00E+00	0.00	

Details of Layered System:

ID: S22-348 Title: Proposed Wentworth Health Services Revelopment, Hospital Road, Wentworth

Layer No.	Lower i/face	Material ID	Isotropy	Modulus (or Ev)	P.Ratio (or vvh)	F	Eh	vh
1	rough	Gran 250	Aniso.	2.50E+02	0.35	1.85E+02	1.25E+02	0.35
2	rough	subsltCB10	Aniso.	1.00E+02	0.45	6.90E+01	5.00E+01	0.45
3	rough	Sub CBR3	Aniso.	3.00E+01	0.45	2.07E+01	1.50E+01	0.45
Perfor Laver		ationships: Material	Component	Perform.	Perform.	Shift		
No.	20000200	TD	oomponione	Constant	Exponent	Factor		
2	top	subsltCB10	EZZ	0.009150	7.000	140001		
3	top	Sub_CBR3	ΕZΖ	0.009150	7.000			
Reliab	ility Fac	tors						

Reliability Factors: Project Reliability: Austroads 95% Layer Reliability Material No. Factor Type 2 1.00 Subgrade (Selected Material) (Austroads 2017) 3 1.00 Subgrade (Austroads 2017) ,

Details of Layers to be sublayered: Layer no. 1: Austroads (2004) sublayering Layer no. 2: Austroads (2004) sublayering

Strains:

Layer No.	Thickness	Material ID	Axle	Unitless Strain
2	255.00	subsltCB10	0.	1 0(10 02
3	0.00	Sub CBR3	SADT(80):	1.861E-03
		-	SADT(80):	1.737E-03
Results:				

Layer No. 1	Thickness 200.00	Material ID Gran_250	Axle Group	CDF n/a
2	255.00	subsltCB10	Total:	9.390E-01
3	0.00	Sub_CBR3	Total:	5.781E-01

CIRCLY - Version 7.0 (1 February 2022)

Job Title: S22-348 Proposed Wentworth Health Services Redelopment, 24 Hospital Road, Wentworth, NSW

Design Method: Austroads 2017

NDT (cumulative heavy vehicle axle groups over design period): 1.47E+05

Traffic Load Distribution:

ID: LTR - 04 Name: Lightly-Trafficked Roads - 04 - local access with buses ESA/HVAG: 0.443

Details of Load Groups:

Load No.	Load ID	Load Category		Load Type	Radius	Pressure/ Ref. stress	Exponent
1	ESA750-Full	ESA750-Full		Vertical Fo	orce 92.1	0.75	0.00
2	SAST53	SAST53		Vertical Fo	orce 102.4	0.80	0.00
Load L	ocations:						
Locati	on Load	Gear	Х	Y	Scaling	Theta	
No.	ID	No.			Factor		
1	ESA750-Full	1	-165.0	0.0	1.00E+00	0.00	
2	ESA750-Full	1	165.0	0.0	1.00E+00	0.00	
3	ESA750-Full	1	1635.0	0.0	1.00E+00	0.00	
4	ESA750-Full	1	1965.0	0.0	1.00E+00	0.00	
1	SAST53	1	0.0	0.0	1.00E+00	0.00	
2	SAST53	1	2130.0	0.0	1.00E+00	0.00	

Details of Layered System:

ID: S22-348 Title: Proposed Wentworth Health Services Revelopment, Hospital Road, Wentworth

Layer No. 1 2 3		Material ID Gran_350 Gran_150 Sub_CBR3	Isotropy Aniso. Aniso. Aniso.	Modulus (or Ev) 3.50E+02 1.50E+02 3.00E+01	0.35 0.35		Eh 1.75E+02 7.50E+01 1.50E+01	vh 0.35 0.35 0.45
Devices								
		ationships:		_				
Layer	Location	Material	Component	Perform.	Perform.	Shift		
No.		ID		Constant	Exponent	Factor		
3	top	Sub_CBR3	ΕZΖ	0.009150	7.000			
Reliab	ility Fac	tors:						
		lity: Austroads 95%						
	Reliabil							
No.	Factor	Type						
			0017)					
3	1.00	Subgrade (Austroads	2017)					
	c -							
Detail	s or Laye.	rs to be sublayered:						

Layer no. 1: Austroads (2004) sublayering Layer no. 2: Austroads (2004) sublayering

Strains:

Layer No. 3	Thickness 0.00	Material ID Sub CBR3	Axle	Unitless Strain
-			SADT(80):	1.852E-03
Results:				

Layer No.	Thickness	Material TD	Axle Group	CDF
1	170.00	Gran_350		n/a
2	250.00	Gran_150		n/a
3	0.00	Sub_CBR3	Total:	9.065E-01